Cell complexes and CW complexes Motivations - combinatorial cell decompositions for moduli spaces CELL DECOMPOSITIONS OF THE TEICHMÜLLER AND MODULI SPACES OF CLOSED RIEMANN SURFACES OF $Z_2 X Z_2$ Ζ, d5 Z_2 Order 24 group generated by swaps and rotations Z_xZ.

Rodado Amerris

- homotopy groups of spheres
Ex (degree maps of spheres)

$$S^{k} \xrightarrow{\Gamma} S^{k} \longrightarrow S^{k}/p =: M(p)$$
, a mod-p Moore space
 $= S^{k} \cup_{f} e^{k+1}$
 $S' \xrightarrow{2} S' \longrightarrow IRP^{2}$
inducing isomorphisms in $\underline{H}^{*}(-;\Omega)$
" S^{k} admits Vo-self maps."
 p primes
 Ex (Adams 1966 J(X), IV; Barratt 1963 unpublished)
Let $d = \begin{cases} 2p-2 & \text{if } p \text{ odd} \\ 8 & \text{if } p=2 \end{cases}$
Them there is a map
 $v: \overline{\Sigma}^{d} M(p) \longrightarrow M(p)$
inducing on isomorphism in K-theory. Hence all iterates
of this v are nontrivial.
" $M(p)$ admits Vi-self maps."
Note The stable composite
 $S^{d} \longrightarrow \overline{\Sigma}^{d} M(p) \longrightarrow M(p) \longrightarrow S'$
inclusion of bottom cell bottom cell is dimension 0
is α_{i} (the first element of order p in T_{i}^{*}) for p odd
and 8σ (τ is the generator of T_{i}^{*}) for $p=2$.

refined / realistic structures in matter modeling shape of networks:

https://www.scientificamerican.com/article/how-squishy-math-is-revealing-doughnuts-in-the-brain/

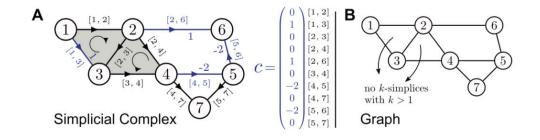
SIAM REVIEW Vol. 62, No. 2, pp. 353-391 (C) 2020 Society for Industrial and Applied Mathematics

Random Walks on Simplicial **Complexes and the Normalized** Hodge I-Laplacian*

Michael T. Schaub[†] Austin R. Benson[‡] Paul Horn[§] Gabor Lippner[¶] Ali Jadbabaie

Abstract. Using graphs to model pairwise relationships between entities is a ubiquitous framework for studying complex systems and data. Simplicial complexes extend this dyadic model of graphs to polyadic relationships and have emerged as a model for multinode relationships occurring in many complex systems. For instance, biological interactions occur between sets of molecules and communication systems include group messages that are not pairwise interactions. While Laplacian dynamics have been intensely studied for graphs, corresponding notions of Laplacian dynamics beyond the node-space have so far remained largely unexplored for simplicial complexes. In particular, diffusion processes such as random walks and their relationship to the graph Laplacian—which underpin many methods of network analysis, including centrality measures, community detection, and contagion models-lack a proper correspondence for general simplicial complexes.

> Focusing on coupling between edges, we generalize the relationship between the normalized graph Laplacian and random walks on graphs by devising an appropriate normalization for the Hodge Laplacian—the generalization of the graph Laplacian for simplicial complexes and relate this to a random walk on edges. Importantly, these random walks are intimately connected to the topology of the simplicial complex, just as random walks on graphs are related to the topology of the graph. This serves as a foundational step toward incorporating Laplacian-based analytics for higher-order interactions. We demonstrate how to use these dynamics for data analytics that extract information about the edge-space of a simplicial complex that complements and extends graph-based analysis. Specifically, we use our normalized Hodge Laplacian to derive spectral embeddings for examining trajectory data of ocean drifters near Madagascar and also develop a generalization of personalized PageRank for the edge-space of simplicial complexes to analyze a book copurchasing dataset.



Simplicial complexes and graphs. (A) Schematic of an SC with a prescribed orientation. Fig. 2.1 This is the running example of an SC in the text. Shaded areas correspond to the 2-simplices $\{1,2,3\}$ and $\{2,3,4\}$. An edge flow c along the paths $2 \rightarrow 6 \rightarrow 5 \rightarrow 4$ and $1 \rightarrow 3$ as well as its corresponding vector representation are depicted in blue. (B) Schematic of a graph, corresponding to the 1-skeleton of the SC in (A). There are no k-simplices with k > 1 in the graph.

