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Abstract. Using graphs to model pairwise relationships between entities is a ubiquitous framework
for studying complex systems and data. Simplicial complexes extend this dyadic model of
graphs to polyadic relationships and have emerged as a model for multinode relationships
occurring in many complex systems. For instance, biological interactions occur between
sets of molecules and communication systems include group messages that are not pairwise
interactions. |\While Laplacian dynamics have been intensely studied for graphs, correspond-
g notions of Laplacian dynamics beyond the node-space have so far remained largely
unexplored for simplicial complexes. In particular, diffusion processes such as random walks
and their relationship to the graph Laplacian—which underpin many methods of network
analysis, including centrality measures, community detection, and contagion models—lack
a proper correspondence for general simplicial complexes.

Focusing on coupling between edges, we generalize the relationship between the normal-
ized graph Laplacian and random walks on graphs by devising an appropriate normalization
for the Hodge Laplacian—the generalization of the graph Laplacian for simplicial complexes—
and relate this to a random walk on edges. Importantly, these random walks are intimately
connected to the topology of the simplicial complex, just as random walks on graphs are
related to the topology of the graph. This serves as a foundational step toward incorporating
Laplacian-based analytics for higher-order interactions. We demonstrate how to use these
dynamics for data analytics that extract information about the edge-space of a simplicial
complex that complements and extends graph-based analysis. Specifically, we use our
normalized Hodge Laplacian to derive spectral embeddings for examining trajectory data of
ocean drifters near Madagascar and also develop a generalization of personalized PageRank
for the edge-space of simplicial complexes to analyze a book copurchasing dataset.
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Fig. 2.1 Simplicial complexes and graphs. (A) Schematic of an SC with a prescribed orientation.
This is the running example of an SC' in the text. Shaded areas correspond to the 2-simplices
{1,2,3} and {2,3,4}. An edge flow c along the paths 2 — 6 — 5 — 4 and 1 — 3 as well
as its corresponding vector representation are depicted in blue. (B) Schematic of a graph,
corresponding to the 1-skeleton of the SC in (A). There are no k-simplices with k > 1 in
the graph.
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