MAT8201, Algebraic Topology

Assignment 13

Due in-class on Friday, May 26

Numbered exercises are from Lee's "Introduction to topological manifolds," second edition.

1. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are homomorphisms of abelian groups. Show that there is an exact sequence

 $0 \to \ker(f) \to \ker(gf) \to \ker(g) \to \operatorname{coker}(f) \to \operatorname{coker}(gf) \to \operatorname{coker}(g) \to 0$

2. In class, with the identification $\Delta_n = \{(t_1, t_2, \ldots, t_n) | 0 \le t_1 \le t_2 \le$ $\cdots \leq t_n \leq 1$, we defined subdivision maps $s_n^i : \Delta_{n+1} \to \Delta_n \times [0,1]$ for $0\leq i\leq n$ by

$$
s_n^i(t_1,\ldots,t_{n+1}) = ((t_1,\ldots,\widehat{t_{i+1}},\ldots,t_{n+1}),t_{i+1})
$$

Let $d_n^i: \Delta_{n-1} \to \Delta_n$ be the faces maps analogous to Lee's $F_{i,n}$ so that

$$
d_n^i(t_1,\ldots,t_{n-1}) = \begin{cases} (0,t_1,\ldots,t_{n-1}) & i = 0\\ (t_1,\ldots,t_i,t_i,\ldots,t_{n-1}) & 0 < i < n\\ (t_1,\ldots,t_{n-1},1) & i = n \end{cases}
$$

Show that these satisfy the relations

- $s_n^i d_{n+1}^j = \begin{cases} (d_n^{j-1}, \text{id}) \circ s_{n-1}^i & \text{if } i < j-1 \\ (d_n^{j}, \text{id}) \circ s_{n-1}^{i-1} & \text{if } i > j \end{cases}$ $(d_n^j, id) \circ s_{n-1}^{i-1}$ if $i > j$
- $s_n^0 d_{n+1}^0 = j_0$
- $s_n^n d_{n+1}^{n+1} = j_1$
- $s_n^{i-1}d_{n+1}^i = s_n^i d_{n+1}^i$ for $1 \le i < n+1$

Use this to show that the operator $h: C_n(X) \to C_{n+1}(X \times [0,1])$ given by

$$
h\left(\sum a_{\sigma}\sigma\right) = \sum a_{\sigma}\sum_{i=0}^{n}(-1)^{i}(\sigma, id) \circ s_{n}^{i}
$$

satisfies $\partial h(x) + h \partial(x) = \tilde{j}_0(x) - \tilde{j}_1(x)$, where $\tilde{j}_k = (\sigma, id) \circ j_k$.

3. Exercise 13.12.

4. Let C_* be the chain complex with

$$
C_n = \begin{cases} \mathbb{Z} & \text{if } n = 1 \\ 0 & \text{otherwise} \end{cases}
$$

Let D_\ast be the chain complex with

$$
D_n = \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise} \end{cases}
$$

such that the boundary map $\partial\colon D_1\to D_0$ sends m to $2m.$

Show that the natural projection $\pi: D_* \to C_*$ is a map of chain complexes and it induces the zero map $H_*(D_*) \to H_*(C_*)$. Show that there is no chain homotopy h with $\partial h + h\partial = \pi$ (from π to zero).