MAT8021, Algebraic Topology

Assignment 9

Due in-class on Tuesday, April 20

- 1. Consider cohomology with coefficients in a ring R. Write $I = [0, 1]$.
	- (a) By identifying $I/\partial I$ with S^1 , show that

$$
H^*(I, \partial I) \cong \begin{cases} R & \text{if } * = 1\\ 0 & \text{otherwise} \end{cases}
$$

(b) Let $\alpha \in H^1(I, \partial I)$ be a generator. Given any pair (X, A) of spaces, consider the composite

$$
H^*(X, A) \xrightarrow{\otimes \alpha} H^*(X, A) \otimes H^1(I, \partial I) \longrightarrow
$$

$$
\xrightarrow{p_1^* \otimes p_2^*}
$$

$$
\xrightarrow{H^*(X \times I, A \times I) \otimes H^1(X \times I, X \times \partial I)}
$$

$$
\xrightarrow{\frown} H^{*+1}(X \times I, A \times I \cup X \times \partial I)
$$

where p_1 and p_2 are projections. Suppose that $A \subset X$ is a CW-pair. Then $(X \times I, A \times I \cup X \times \partial I)$ is also a CW-pair and so the above is equivalent to a map

$$
\widetilde{H}^*(X/A) \to \widetilde{H}^{*+1}((X \times I)/(A \times I \cup X \times \partial I)) \cong \widetilde{H}^{*+1}((X/A) \wedge S^1)
$$

Show that this map is an isomorphism (cf. Question 1 of Assignment 5). (Hint: The connecting homomorphisms in the long exact sequence of cohomology for a pair satisfy a Leibniz formula.)

- 2. Fix a ring R and an integer n. Suppose C_*, D_* are chain complexes of R-modules such that
	- the groups C_k are free R-modules for $k > n$, and
	- the homology groups $H_k(D_*)$ are zero for $k \geq n$

Additionally, suppose we are given maps $f_m: C_m \to D_m$ for $m \leq n$ such that $\partial f_m = f_{m-1}\partial$.

Show (by induction) that we can extend this to a chain map $f: C_* \to D_*$ and that any two extensions are chain homotopic.

For the remaining questions, all chain complexes are over $\mathbb{Z}/2$, i.e., $2x = 0$ for all x.

A cochain complex C^* has *cup-i products* if it is equipped with operations $(x, y) \mapsto x \smile_i y$ for $i \geq 0$ such that

- if $x \in C^p$, $y \in C^q$, then $x \smile_i y \in C^{p+q-i}$
- $(x+x') \smile_i y = x \smile_i y + x' \smile_i y$ and similarly $x \smile_i (y+y') = x \smile_i y$ $y + x \smile_i y'$

•
$$
\delta(x \smile_0 y) = (\delta x) \smile_0 y + x \smile_0 (\delta y)
$$

• for $i > 0$,

$$
\delta(x \smile_i y) = (\delta x) \smile_i y + x \smile_i (\delta y) + x \smile_{i-1} y + y \smile_{i-1} x
$$

For instance, one can show (using the method of acyclic models) that $C^*(X)$, for X a space, naturally comes equipped with cup-i products, each one expressing "how noncommutative" the previous one was.

3. Show that for all $j \leq p$ we get a well-defined "squaring" operation Sq^{j} : $H^p(C^*) \to H^{p+j}(C^*)$ given by

$$
\mathrm{Sq}^j[x] = [x \smile_{p-j} x]
$$

such that $Sq^{j}([x+y]) = Sq^{j}([x]) + Sq^{j}([y])$. (In the cohomology of a space, these are called the Steenrod squares.)

- 4. If $f: C^* \to D^*$ is a map of cochain complexes such that $f(x \searrow_i y) =$ $f(x) \smile_i f(y)$, show that the induced map $H^*(C^*) \to H^*(D^*)$ preserves the squaring operations.
- 5. If $0 \to C^* \to D^* \to E^* \to 0$ is a short exact sequence of cochain complexes preserving cup-i products, show that the connecting homomorphism

$$
\delta: H^p(E^*) \to H^{p+1}(C^*)
$$

satisfies $\delta(Sq^j[x]) = Sq^j(\delta[x])$.