MAT8021, Algebraic Topology

Assignment 6

Due in-class on Tuesday, March 30

1. Recall that a *topological group* G is a space with continuous maps

so that on the underlying set, we get a group with $g \cdot h = \mu(g, h), g^{-1} =$ $\nu(g)$, and $e = \iota(*)$.

- (a) Show that $H_*(G)$ is a ring by defining a multiplication on $C_*(G)$ (cf. Question 4 of Assignment 5). This is called a Pontrjagin ring structure on $H_*(G)$.
- (b) If G is abelian, show that $C_*(G)$ (and hence $H_*(G)$) is graded com*mutative,* i.e., $x \cdot y = (-1)^{|x||y|}y \cdot x$ for any $x, y \in C_*(G)$, where |x| and $|y|$ denote the degrees of x and y respectively.
- 2. (a) Let $G = \mathbb{R}$. What is the Pontrjagin ring structure on $H_*(\mathbb{R})$?
	- (b) Show that $H_*(S^1)$ is isomorphic to $\mathbb{Z}[\alpha]/(\alpha^2)$ with $|\alpha|=1$.
	- (c) More generally, it turns out that

$$
H_*(S^1 \times S^1) \cong \mathbb{Z}[\alpha, \beta]/(\alpha^2, \beta^2, \alpha\beta + \beta\alpha) =: \Lambda[\alpha, \beta]
$$

is an exterior algebra on α, β with $|\alpha| = |\beta| = 1$. Similarly $H_*(S^1 \times$ $S^1 \times S^1$ \cong $\Lambda[\alpha, \beta, \gamma]$, etc. In contrast, if $G = S^3$ regarded as the unit quaternions, what is the Pontrjagin ring structure on $H_*(S^3)$?

- 3. Let $G = SO(3)$ be the 3×3 matrices over R with determinant 1.
	- (a) Viewing it as the group of rotations in \mathbb{R}^3 , describe a homeomorphism $SO(3) \cong \mathbb{RP}^3$ by defining a map $D^3 \to SO(3)$ that factors through \mathbb{RP}^3 .
	- (b) Give a presentation for $H_*(\text{SO}(3))$ as a ring.
	- (c) What about $H_*(\text{SO}(3);\mathbb{Z}/2)?$ In particular, show that the square of the generator of $H_1(SO(3); \mathbb{Z}/2)$ equals zero.
- 4. Consider the *n*-dimensional real projective space $\mathbb{R}\mathbb{P}^n = S^n/(x \sim -x)$ $(\mathbb{R}^{n+1}\setminus\{O\})/((x_0,\ldots,x_n)\sim(\lambda x_0,\ldots,\lambda x_n),\lambda\in\mathbb{R}^\times)$ and write its points in homogeneous coordinates $[x_0 : \ldots : x_n]$. There are embeddings $\mathbb{R}P^n \hookrightarrow$ $\mathbb{R}\mathbb{P}^{n+1}$ given by $[x_0 : \ldots : x_n] \mapsto [x_0 : \ldots : x_n : 0].$
	- (a) Show that the complement $\mathbb{R}\mathbb{P}^{n+1}\setminus\mathbb{R}\mathbb{P}^n$ is homeomorphic to \mathbb{R}^{n+1} .
	- (b) Deduce from part (a) that \mathbb{RP}^{n+1} is formed by attaching an $(n+1)$ dimensional cell to $\mathbb{R}P^n$. In particular, check that the attaching map is injective on the interior $\mathring{D}^{n+1} \cong \{(x_0, \ldots, x_{n+1}) \in S^{n+1} | x_{n+1} > \}$ 0}.
	- (c) Deduce from part (b) the groups in $C_*^{\text{CW}}(\mathbb{R}\mathbb{P}^n)$ as follows:

$$
\cdots \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0
$$

where the boundary maps turn out to alternate between 0 and multiplication by 2 (this has to do with orientations; cf. page 119 of Jiang). Calculate all $H_k(\mathbb{R}\mathbb{P}^n)$.

- 5. Consider the *complex* projective space \mathbb{CP}^n defined analogously.
	- (a) What is its (real) dimension as a CW complex? In particular, what is the space \mathbb{CP}^1 ?
	- (b) Show that \mathbb{CP}^{n+1} is formed by attaching a $(2n + 2)$ -dimensional cell to \mathbb{CP}^n .
	- (c) Calculate all $H_k(\mathbb{CP}^n)$ from $C_*^{\text{CW}}(\mathbb{CP}^n)$.
	- (d) Generalize the above to projective spaces over the quaternions H. (The failure of associativity in the octonions O creates a problem for further generalizations.)