## MAT8021, Algebraic Topology

## Assignment 11

Due in-class on Friday, May 7

1. Given a map  $f: X \to Y, b \in H^p(Y)$ , and  $x \in H_n(X)$ , show that

$$f_*(f^*(b) \frown x) = b \frown f_*(x)$$

(This formula goes by many names: the "projection formula," or "Frobenius reciprocity." The special case when p = n gives  $\langle f^*b, x \rangle = \langle b, f_*x \rangle$  for the Kronecker pairing  $\langle -, - \rangle \colon H^p(X; R) \otimes H_p(X; R) \to R$  induced by the evaluation map.)

- 2. Let *I* be a directed set, *L* an abelian group, and  $A: I \to Ab$  an *I*-directed diagram of abelian groups, with bonding maps  $f_{ij}: A_i \to A_j$  for  $i \leq j$ . Show that a map  $A \to c_L$ , the constant functor at *L*, given by compatible maps  $f_i: A_i \to L$ , is a direct limit if and only if
  - (a) for any  $b \in L$  there exists  $i \in I$  and  $a_i \in A_i$  such that  $f_i a_i = b$ , and
  - (b) for any  $a_i \in A_i$  such that  $f_i a_i = 0 \in L$ , there exists  $j \ge i$  such that  $f_{ij}a_i = 0 \in A_j$ .
- 3. (a) Embed  $\mathbb{Z}/p^n$  into  $\mathbb{Z}/p^{n+1}$  by sending 1 to p, and write  $\mathbb{Z}_{p^{\infty}}$  for the union. It is called the Prüfer group (at p). Show that  $\mathbb{Z}_{p^{\infty}} \cong \mathbb{Z}[1/p]/\mathbb{Z}$  and that

$$\mathbb{Q}/\mathbb{Z} \cong \bigoplus_p \mathbb{Z}_{p^{\infty}}$$

where the sum runs over the prime numbers.

- (b) Compute  $\mathbb{Z}_{p^{\infty}} \otimes_{\mathbb{Z}} A$  for A each of the following abelian groups:  $\mathbb{Z}/n$ ,  $\mathbb{Z}[1/q]$  (for q a prime), and  $\mathbb{Z}_{q^{\infty}}$  (for q a prime).
- (c) Compute  $\operatorname{Tor}_{1}^{\mathbb{Z}}(M, \mathbb{Z}[1/p])$  and  $\operatorname{Tor}_{1}^{\mathbb{Z}}(M, \mathbb{Z}_{p^{\infty}})$  for any abelian group M in terms of the self-map  $p: M \to M$ .
- 4. Show that if  $f: X \to Y$  induces an isomorphism in homology with coefficients in the prime fields  $\mathbb{F}_p$  (for all primes p) and  $\mathbb{Q}$ , then it induces an isomorphism in homology with coefficients in  $\mathbb{Z}$ .