MAT7064, Topics in Geometry and Topology

Assignment 6

Due in-class on Friday, November 8

- 1. Suppose $A \to X$ is a CW inclusion such that A is n-connected and the inclusion is m-connected. Find the strongest relationship that you can between $\pi_k(X|A)$ and $\pi_k(X, A)$ using the Blakers-Massey excision theorem.
- 2. Suppose G is an abelian group and $n \ge 2$. We know from algebra that we can find an exact sequence

$$0 \to R \to F \to G \to 0$$

where F is free on some set of generators $\{e_{\alpha} \mid \alpha \in A\} \subset F$ and R is free on some set of relations $\{f_{\beta} \mid \beta \in B\} \subset R$. Show that we can find a map

$$\bigvee_{\beta \in B} S^n \to \bigvee_{\alpha \in A} S^n$$

such that the induced map on π_n is isomorphic to the map $R \to F$.

3. (continuing the previous question) Show that we can construct a CW complex X, having cells only in dimensions n and n + 1, with $\pi_k(X) = 0$ for k < n and $\pi_n(X) = G$.

Furthermore, show that we can construct a CW complex K(G, n), having cells only in dimensions n and higher, with the only nonzero homotopy group being $\pi_n(K(G, n)) = G$.

4. (still continuing) Given any based space Y with $\pi_n(Y) = G$ and $\pi_k(Y) = 0$ for k > n, show that we can construct a map $K(G, n) \to Y$ which is an isomorphism in dimension n.

Then use the Whitehead theorem to conclude that any two CW complexes with the only nonzero homotopy group, π_n , being isomorphic to G are homotopy equivalent.