MAT7064, Topics in Geometry and Topology

Assignment 1

Due in-class on Friday, September 20

Numbered exercises are from Hatcher's "Algebraic Topology."

1. Suppose A is a set with two binary operations $\circ, *$ that share a common two-sided unit e: for any $a \in A$,

 $a = e \circ a = a \circ e = e * a = a * e$

Suppose that these two operations additionally satisfy an interchange law

$$(a*b)\circ(c*d)=(a\circ c)*(b\circ d)$$

Show that this implies $a * b = a \circ b$ for any $a, b \in A$, and additionally $a \circ b = b \circ a$.

- 2. Suppose X is a space with a multiplication operation $*: X \times X \to X$ having unit $x_0 \in X$, and let $A = \pi_1(X, x_0)$. Show that path composition \circ and pointwise multiplication (f * g)(t) = f(t) * g(t) satisfy the conditions of the previous problem, and hence the multiplication on $\pi_1(X, x_0)$ is commutative.
- 3. Let $B = [0,1] \times [0,1]$ be the unit square with boundary ∂B . Suppose X is a space with a chosen basepoint x_0 , and let A be the set of maps $f: B \to X$ such that $f(\partial B) = \{x_0\}$. By analogy with the fundamental group, define two "multiplication" operations $\circ, *: A \times A \to A$ that satisfy the interchange rule listed in Question 1. (They have no unit until we pass to homotopy classes of maps.)
- 4. Hatcher, Exercise 2 on page 358.