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Exceptional points are a unique feature of non-Hermitian systems, at which the 15 

eigenvalues and corresponding eigenstates of a Hamiltonian coalesce. Many intriguing 16 

physical phenomena arise from the topology of exceptional points, such as bulk-Fermi 17 

arcs and the braiding of eigenvalues. Here, we report that a structurally richer 18 

degeneracy morphology, known as the swallowtail catastrophe in singularity theory, 19 

can naturally exist in non-Hermitian systems with both parity–time and pseudo-20 

Hermitian symmetries. For the swallowtail, three different types of singularity exist at 21 

the same time and interact with each other — an isolated nodal line, a pair of 22 



 

 

exceptional lines of order three and a nondefective intersection line. Although these 23 

singularities seem independent, they are stably connected at a single point — the vertex 24 

of the swallowtail — through which transitions can occur. We implement such a system 25 

in a nonreciprocal circuit and experimentally observe the degeneracy features of the 26 

swallowtail. Based on the frame rotation and deformation of eigenstates, we further 27 

demonstrate that the various transitions are topologically protected. 28 

Main: In recent years, non-Hermitian systems have attracted a great deal of interest. A main 29 

goal is to address the ubiquitous open quantum systems that undergo energy exchange with 30 

the surrounding environment via the imaginary part of their eigenenergies.1–12 Degenerate 31 

singularities in band structures are similar to topological defects in real space. Well-known 32 

singularities in Hermitian systems are Weyl/Dirac points and nodal lines13–18, and their 33 

associated phenomena, such as topological edge modes13,18 and chiral Landau levels16, have 34 

been fully explored. In non-Hermitian systems, the complex nature of eigenvalues results in 35 

more exotic singularities such as exceptional points, at which two or more eigenstates 36 

coalesce. Exceptional points can carry fractional topological invariants, which not only enrich 37 

the topological classes in band theory, but also induce more intriguing physical consequences, 38 

such as “bulk Fermi arcs”2,3 and braiding of eigenvalues10. In addition, the skin effect, which 39 

is associated with the point gaps in non-Hermitian bands, is also a unique feature of non-40 

Hermitian systems.19–21 41 

 In non-Hermitian systems with parity–time (PT) symmetry or chiral symmetry, 42 

exceptional surfaces (ESs) can stably exist as singular hypersurfaces in three-dimensional 43 

(3D) parameter space, acting as boundaries between exact and broken phases.22–24 44 

Remarkably, as subspaces of the parameter space, these ESs can exhibit numerous new 45 

singularities, such as high-order exceptional points (or lines) appearing as cusps6,9 and 46 

nondefective degeneracies that are intersections of ESs8,11,12. The coexistence of diverse 47 



 

 

singularities brings the possibility that these singularities can be associated with each other. 48 

However, previous works have commonly focused on a single type. The transitions among 49 

different types, as well as the underlying topological structure, remain largely unexplored. 50 

In Hermitian systems with PT symmetry17,25–27 (the corresponding Hamiltonians are 51 

real Hermitian matrices), the eigenstates were previously reported to be real and orthogonal 52 

and to form the orthonormal basis of a Euclidean-like space.17 The nodal lines in the band 53 

structure manifest as topological obstructions of the eigenstate frames, around which the 54 

eigenstates rotate in a way characterized by non-Abelian quaternion topological charges,17 55 

which has been experimentally observed in a recent work.18 Here, by expanding our scope to 56 

non-Hermitian systems, in particular those with PT symmetry and an additional η-pseudo-57 

Hermitian symmetry, the eigenstates form a Minkowski-like orthogonal basis in which the 58 

vectors inhabit a space comparable to the Riemann space used in general relativity. As a 59 

result, a more exotic and structurally much richer degeneracy morphology emerges, known as 60 

the swallowtail catastrophe in singularity theory28. The swallowtail is one of the elementary 61 

catastrophes in Arnold’s ADE classification28–30 and has been widely applied in many 62 

branches of physics and engineering, ranging from mechanics31 to caustics of light32. 63 

However, it has never been studied in eigenvalue dispersions. Here, we discover for the first 64 

time that the swallowtail catastrophe, which naturally exists in the parameter space of non-65 

Hermitian systems with PT symmetry together with a pseudo-Hermitian symmetry, 66 

encompasses degeneracy lines of three different types. In addition to a nodal line (NL) 67 

isolated from ESs (similar to the NLs in Hermitian systems), the swallowtail also has a pair 68 

of exceptional lines of order three (EL3) and a nondefective intersection line (NIL), which lie 69 

entirely on the ESs. Both the NL and NIL are lines of diabolic points with two linearly 70 

independent degenerate eigenstates. The difference is that the NL is isolated from ESs, 71 

whereas the NIL is not isolated, as it is the intersection line of ESs. Surprisingly, these 72 



 

 

seemingly independent types of degeneracy lines are stably connected at a meeting point (MP) 73 

on the swallowtail, revealing interesting transitions among them as the parameters change. By 74 

realizing such systems in a nonreciprocal circuit, we experimentally observe the degeneracy 75 

features of the swallowtail. Furthermore, transitions among different types of singularities 76 

complying with the topological constraints associated with them are demonstrated both 77 

theoretically and experimentally. 78 

 The three-state non-Hermitian Hamiltonian we consider takes the following form: 79 

ܪ      = ቎− ଵ݂ − ଶ݂ + 1 − ଵ݂ − ଶ݂ଵ݂ ଵ݂ + ଷ݂ − ଷ݂ଶ݂ − ଷ݂ ଶ݂ + ଷ݂቏                                        (1) 80 

where f1, f2 and f3 are real numbers, specifying three degrees of freedom and defining a 3D 81 

parameter space. Such a Hamiltonian preserve two symmetries1: 82 

ଵିߟܪߟ        = ሿܶܲ,ܪற,    ሾܪ = 0                                                (2) 83 

Here, the metric operator η=diag(–1,1,1), and the first relation shows that H is η-pseudo-84 

Hermitian. The PT-symmetry operator is a combination of the parity-inversion P and time-85 

reversal T operators. If the parameters f1, f2 and f3 are momentum-space coordinates, then the 86 

PT operation takes the complex conjugate of the Hamiltonian up to a unitary transformation, 87 

PT(H)=U†H*U, and the requirement of a real-valued Hamiltonian [Eq. (1)] is equivalent to 88 

that the Hamiltonian preserves the PT symmetry (see more details in Section 3 of the 89 

supplementary information). We note that two pairs of off-diagonal entries are anti-90 

symmetric (H12=–H21, H13=–H31), representing nonreciprocal hopping between modes. In 91 

contrast, the remaining pair of off-diagonal entries are symmetric (H23=H32) and represents 92 

reciprocal hopping. The degenerate surfaces and lines in the eigenvalue structure form a 93 

swallowtail, as shown in Fig. 1a (see the ADE description in Section 2 of the supplementary 94 

information and different views of Fig. 1a in Movie 1). The ESs (red surfaces) and EL3s 95 



 

 

(black lines) result from the PT symmetry9 of the system. The pair of EL3s merges at the MP 96 

(marked by a red star in Fig. 1a), which emits the nondefectively degenerate NL and NIL 97 

(blue lines) in opposite directions (MP is a three-fold degeneracy with two linearly 98 

independent eigenstates). The NL is isolated from ESs, and it is a linear degeneracy between 99 

the 1st and 2nd bands. In contrast, the NIL is a complete intersection of ESs8,11,12, which are 100 

formed by the degeneracy of the 2nd and 3rd  bands. The common feature is that both the NL 101 

and NIL are linear crossings of eigenvalue dispersions, and both are nondefective twofold 102 

degeneracies (i.e., the two degenerate eigenstates are linearly independent of each other). 103 

Owing to the two symmetries of the system in Eq. (2), the NL and NIL cannot be extended 104 

into a tube or cone in parameter space. Thus, their stability is symmetry-protected (see 105 

Sections 5–7 in the supplementary information for a demonstration). Therefore, the 106 

swallowtail is an assembly of different types of singularities (ES, EL3, NIL, NL and MP), 107 

and its existence is protected by the two symmetries [Fig. S4 of supplementary information 108 

shows various structures resulting from combinations of swallowtails by changing the 109 

Hamiltonian form in Eq. (S13) without breaking the symmetries in Eq. (2)]. 110 

 We next analyze the local structure of eigenvalues over the swallowtail. The EL3s are 111 

lines at which two ESs meet, forming cusps. In catastrophe theory, a cusp is formed due to 112 

the projection of a bending curve (or surface) onto a lower-dimensional space. Figure 1b 113 

shows that such a bending process can be observed in non-Hermitian eigenvalue structures, 114 

i.e., on the plane f3=0.3, the red line (ES) bends in the f1-f2-Reω space (ω denotes the 115 

eigenvalues). Thus, swapping of eigenvalues will occur if a tracking point moves along the 116 

ES and “jumps” through an EL3, from the ES on one side of the EL3 to the ES on the other 117 

side, as the parameters change. Here, a “jump” corresponds to a quotient map in mathematics, 118 

and details are given in Section 9 of the supplementary information (discussions in Fig. 119 

S10e1). In contrast to the EL3s, the NIL is a transversal intersection of two ESs, and the 120 



 

 

nearby eigenvalue dispersion forms a double cone (inset of Fig. 1b). The pair of EL3s and the 121 

NIL are connected by ESs, forming a loop. Tuning of the parameters (i.e., to f3=0.1214) can 122 

shrink the loop in a continuous way until the EL3s and NIL merge at the MP (Fig. 1c). From 123 

the other direction along the f3-axis, the MP can also be understood as a point of collision for 124 

a ray (NL) towards a surface (ES). Before the collision, points on the NL are isolated from 125 

the ES (Fig. 1d with f3=0.01). As the NL and ES share the 2nd band (blue surface), the tuning 126 

of system parameters can make them collide, when the three eigenvalues coalesce at the MP 127 

(Fig. 1c). 128 

 To observe the exotic swallowtail configuration and investigate the topological origin 129 

of the evolution of degeneracy features in parameter space, we employ a nonreciprocal 130 

electric circuit system emulating the interaction of three modes (labeled A, B and C in Fig. 2) 131 

as a realization of the three-state non-Hermitian Hamiltonian. Benefiting from a wide range 132 

of active circuit elements, such as operational amplifiers, a circuit system is more flexible 133 

than other platforms, which suits our needs to accurately control the gain and loss and 134 

implement nonreciprocal hoppings. The behavior of a circuit system can be described by the 135 

Laplacian I = JV, where I is the vector of input currents, J is the admittance matrix, and V is 136 

the vector of node voltages.20 The matrix J plays the role of the Hamiltonian matrix. Its 137 

eigenvalues, namely admittance bands j, represent the energy spectra. Thus, the synthetic 138 

dimensions of the parameter space, f1, f2 and f3, can be mapped to the tight-binding hopping 139 

parameters between each pair of circuit nodes (Fig. 2a). The circuit element structure is 140 

shown in Fig. 2b. The nonreciprocal hopping ±f1 (resp. ±f2) between A and B (resp. A and C) 141 

is implemented and precisely controlled by an impedance converter with current inversion 142 

(INIC) in tandem with the capacitance element C1 (resp. C2) as in Fig. 2c. The details of the 143 

INIC are given in Section 1.1 of the supplementary information. The pure capacitance 144 

element C3 realizes a reciprocal hopping –f3 between B and C. One can select the values of 145 



 

 

C1, C2 and C3 in the experiments to implement the required parameters f1, f2 and f3, 146 

respectively. A photo of the printed circuit board (PCB) for the experiments is presented in 147 

Fig. 2d. By measuring the voltage response at each node to a local a.c. current input, we 148 

acquire the admittance eigenvalues and eigenstates. More details on the experimental design 149 

are shown in Section 1 of the supplementary information. 150 

 Figure 3a1 shows the ESs, EL3s and NIL obtained from the experimental 151 

measurements (solid dots) along the computed intersecting curve of the swallowtail with the 152 

plane f3=0.3. These singularities are extracted from the measured admittance eigenvalues 153 

(marked by circles in corresponding colors, Fig. 3a2), which are functions of f1, along various 154 

lines f2=f1+s on the plane f3=0.3. The ESs can be clearly recognized from the quadratic 155 

coalescence of two eigenvalues in the experimental results. Two ESs, one formed by the 1st 156 

and 2nd bands and the other formed by the 2nd and 3rd bands, meet at the cusps of EL3s, each 157 

of which is experimentally observed as the merging point of all three eigenvalues. On the 158 

other hand, the NIL is the intersection of two transversal ESs, both formed by the 2nd and 3rd 159 

bands, as indicated in Fig. 3a1. In contrast to the quadratic coalescence above, it is observed 160 

as a linear degeneracy in the eigenvalue dispersion (Fig. 3a2). The regions shaded in grey are 161 

PT-exact phase domains, while the unshaded regions denote PT-broken phases. From here, as 162 

f3 decreases to 0.1214, the exact phase domain enclosed by the ESs shrinks to the MP (Fig. 163 

3b1), which is the coincidence point of the linear degeneracy and the quadratic coalescence 164 

of eigenvalues (Fig. 3b2). With further lowering of f3 to 0.01, the point on MP and ES are 165 

decoupled into an isolated point (NL) and a smooth curve (ES) as in Fig. 3c1. 166 

Correspondingly, the measured admittance eigenvalues in Fig. 3c2 indicate that the NL is a 167 

linear degeneracy of the 1st and 2nd bands, while the ES is formed by the 2nd and 3rd bands. 168 

Evidently, the MP plays a pivotal role in linking all these degeneracy lines. To more directly 169 

observe how the degeneracy lines and surfaces are connected at the MP, we further measured 170 



 

 

the eigenvalues on the plane f1=f2 (yellow plane, Fig. 1a) which contains all of them. Figure 171 

3d1 illustrates that the NIL and NL are smoothly connected by the MP, which also serves as a 172 

tangent point to the ES. This point separates the ES into upper and lower parts, which are 173 

formed by the degeneracies of different bands (Fig. 3d2). 174 

 We now explain topological aspects of the above transitions among different singular 175 

lines. The swallowtail affords several transition processes among symmetry-protected 176 

degeneracies (see Sections 5–6 in the supplementary information). Here, we focus on the 177 

most interesting transition, i.e., from the pair of EL3s to the NIL and NL. Our goal is to 178 

demonstrate that the pair of EL3s is topologically equivalent to the NIL and NL. Let us 179 

consider a loop encircling the pair of EL3s (lα in green on the plane f3=0.3, Fig. 4a1) and a 180 

loop which encloses both of the NIL and the NL (lβ in yellow on the plane f1+f2=0.3, Fig. 181 

4b1). Both loops inevitably cut through the ESs, as the EL3s and NIL are hypersurface 182 

singularities. Such an approach employs mathematical notions of intersection homotopy33. It 183 

is different from the usual homotopical descriptions using encircling loops along which all 184 

the Hamiltonians are gapped (see details in Section 6 of the supplementary information). The 185 

two loops share the same starting point (SP, purple dots) so that a direct comparison can be 186 

performed. The equivalence between lα and lβ is manifested by observing the eigenframe 187 

rotation and deformation processes. The concept of frame rotation has been used to label 188 

different NLs in multiband Hermitian systems with PT symmetry,17,18 in which the 189 

eigenstates form orthogonal bases of a Euclidean-like space. Here, in our non-Hermitian 190 

system, Euclidean-like geometry is no longer applicable. The symmetries in Eq. (2) require 191 

that the eigenstates satisfy the following orthogonality relation: 192 

       ߮௠்߮ߟ௡ ቄ= 0     ݉ ≠ ݊≠ 0     ݉ = ݊                                                       (3) 193 



 

 

where the superscript T denotes transposition. Since η has the same form as the Minkowski 194 

metric and the Hamiltonian is PT-symmetric (Eq. (1)), the eigenstates φm are analogous to the 195 

frame fields in general relativity34, replacing Euclidean-like geometry with Riemannian-like 196 

geometry. Hence, the eigenstates will undergo Lorentz-like transformations as the parameters 197 

vary (see details in Sections 5–6 of the supplementary information), which induce both frame 198 

rotation and frame deformation. 199 

The trajectories of the eigenvalues along the loops lα and lβ are shown in Figs. 4a2 and 200 

4b2, respectively. The corresponding evolutions of eigenstates are indicated by the 201 

trajectories of the ball markers in Figs. 4a3 and 4b3, where the three axes denote the three 202 

components of the eigenstates. The experimental and theoretical results are shown in the 203 

upper and lower panels, respectively. The three eigenstates φ1, φ2 and φ3 are marked with red, 204 

blue and black, respectively, colors corresponding to those of the eigenvalues with which 205 

they each associate. The increase in the markers’ size denotes the evolution process as the 206 

parameters vary along each loop in the indicated direction. The eigenstates (according to 207 

normalization of Eq. (S26) in the supplementary information) need to be rescaled to place the 208 

tip of the vector on the complex unit sphere. Since we gauge the initial eigenstates to be real 209 

at the SP, the initial and final imaginary parts of the eigenstates are all zero. Thus, the 210 

evolution of the imaginary parts is simply an intermediate process under such normalization, 211 

which is convenient for characterizing the topology. Therefore, the topology is dominantly 212 

characterized by the evolution of the real parts of the eigenstates, which determines the 213 

rotation direction and rotation angle of the eigenframe. Along both loops, the accumulated 214 

rotation angle of φ2 (in blue) is zero, and both φ1 and φ3 rotate by an angle of π, i.e., they each 215 

evolve from the initial states to their antipodal points (as indicated by the green radial axes), 216 

due to the PT symmetry of the system. The results show that both loops can be viewed as 217 

topologically nontrivial as the rotation angles of the eigenframe are quantized. From the SP, 218 



 

 

we observe that φ2 and φ3 begin to rotate in opposite directions, which is a typical frame 219 

deformation process signifying non-Hermiticity. In contrast, for PT-symmetric Hermitian 220 

systems, the eigenstates must rotate in the same manner during a pure eigenframe 221 

rotation.17,18 The intermediate processes along lα and lβ are slightly different from each other 222 

simply because they are along different trajectories. Therefore, topologically, the rotations of 223 

the eigenstates along both loops are the same, which demonstrates that lα is equivalent to lβ, 224 

and further explains why the pair of EL3s can transition to the NIL and NL via the MP (Fig. 4c). 225 

Note that the SPs of lα and lβ need not be the same, so the yellow and green loops in Fig. 4c 226 

need not touch in order for them to afford the same frame rotation/deformation processes (see 227 

the criteria discussed in Section 9 of the supplementary information). The continuous 228 

deformation from lα to lβ is shown in Movie 2. The analysis indicates that the transition is 229 

topologically protected. Our method based on the Lorentz-like transformation of eigenstates 230 

also confirms that the emergence of the swallowtail is allowed by the symmetries in Eq. (2). 231 

 To summarize, we showed that the swallowtail, which plays an important role in 232 

catastrophe theory, naturally appears in the spectra of non-Hermitian systems when we 233 

considered the evolution of eigenvalues in parameter space. In a family of three-state PT-234 

symmetric non-Hermitian systems with an additional pseudo-Hermitian symmetry, we found 235 

degeneracies of eigenvalues in the form of EL3s, an NIL and an NL, and these seemingly 236 

unrelated types of singularities are stably connected at an MP, forming a swallowtail. 237 

Moreover, they can convert into each other as the system parameters change. From the 238 

experimental observations and theoretical analysis, we see that the transitions occur because 239 

these singular lines are topologically associated with each other. Since the symmetries of the 240 

considered Hamiltonian play an important role in the emergence of the swallowtail, exploring 241 

the generic topological classification of these symmetry-protected catastrophe singularities in 242 

the future will be worthwhile. Meanwhile, realizing such Hamiltonians in lattice systems may 243 



 

 

provide valuable platforms for investigating the bulk–edge correspondence in non-Hermitian 244 

swallowtail gapless phases. Furthermore, transitions among diverse singularities may pave a 245 

new way for the development of sensing and absorbing devices22,35. 246 
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Figure captions: 262 

 263 

 264 

Fig. 1| Degeneracy features of eigenvalues on various cross sections in parameter space, 265 

showing a swallowtail structure. a, Plot of the swallowtail structure in 3D parameter space, 266 

obtained as the zero locus of the discriminant for the characteristic polynomial associated 267 

with Eq. (1). Red surfaces are ESs; blue and black lines denote nondefective (NIL and NL) 268 

and defective (EL3) degeneracy lines, respectively. The MP is denoted by the red star. b, c, 269 

and d, Eigenvalues ω (real part) on cut planes f3=0.3 (blue), f3=0.1214 (green) and f3=0.01 270 

(pink) of (a), respectively. Graphs of Re ω as functions of f1 and f2 for the three eigenvalues 271 

are in green, blue and brown, respectively. 272 

 273 

Fig. 2| Experimental realization of the swallowtail catastrophe with a nonreciprocal 274 

circuit system. a, Tight-binding hoppings between each pair of modes A, B and C. b, 275 

Schematic diagram for realizing the Hamiltonian in Eq. (1). Nonreciprocal hoppings between 276 

A and B and between A and C in the circuit system are implemented using an INIC in 277 

tandem with capacitors; reciprocal hopping between B and C is realized with pure capacitors. 278 

c, Internal structure of the INIC circuit. d, Photo of the main part of the PCB sample for the 279 

experiments. 280 

 281 

Fig. 3| Experimental observation of the swallowtail catastrophe with the circuit system. 282 

a–d, Experimental measurements of admittance eigenvalues over the swallowtail along the 283 

planes f3=0.3 (a), f3=0.1214 (b), f3=0.01 (c) and f1=f2 (d). a1–d1, Degeneracies on these cut 284 



 

 

planes: orange-colored lines denote the ES and NL formed by the 1st and 2nd bands; olive-285 

colored lines denote the ESs and NIL formed by the 2nd and 3rd bands. The shaded regions in 286 

grey oblique lines are PT-exact phases, and the unshaded regions are broken phases. The 287 

solid dots mark degeneracies experimentally identified. a2–d2, Real eigenvalue dispersions 288 

as functions of f1 along various lines (f2=f1+s or f3=t) on the corresponding cut planes. The 289 

eigenvalues are ordered from small to large in exact phases. The measured admittance 290 

eigenvalues are marked in circles, and the experimental error bars of a2 are displayed in 291 

Section 1.4 of the supplementary information. All degeneracies (EL3, ES, NIL, MP and NL) 292 

are pointed with arrows in a2–d2. Note that the unlabeled crossings in b2 are not 293 

degeneracies because the imaginary parts of eigenvalues do not coincide. The imaginary parts 294 

of the eigenvalues are shown in Section 4 of the supplementary information. 295 

 296 

Fig. 4| Understanding the transition of double EL3s to the NIL and NL from eigenframe 297 

rotation and deformation. a1-b1, The loop lα (green) encloses the pair of EL3s, and the 298 

loop lβ (yellow) encloses the NIL and NL. a2 and b2, Trajectories of eigenvalues along loops 299 

lα and lβ, respectively. The SPs (purple dots) represent the common starting point. a3 and b3, 300 

Eigenframe deformation and rotation process the along loops lα and lβ, respectively. Upper 301 

and lower panels correspond to experimental and theoretical results, respectively. The 302 

eigenstates φ1, φ2 and φ3 are colored red, blue and black, respectively. The three axes denote 303 

the three components of each eigenstate. The increase in the size of the dots denotes the 304 

directed variation in the parameters along the loops. Re and Im denote the real and imaginary 305 

parts of the eigenstates, respectively. c, Illustration of the transition from double EL3s to the 306 

NIL and NL in the swallowtail structure. Note that in the transition process, the loop does not 307 

cut through any degeneracy lines. 308 
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1. Experimental design and observation 

1.1 INIC for implementing non-reciprocal hoppings 

To implement non-reciprocal hoppings, we use a negative impedance converter through current 

inversion (INIC)1-4, which incorporates a unity-gain stable operational amplifier (OpAmp) with two 

resisters Ra and Rb that are in the positive and negative feedback circuit, respectively (Fig. S1). When 

the OpAmp is operated stably in a negative feedback configuration, the input I1 and output I2 currents 

(depending on the node voltages V1 and V2) can be calculated, assuming that the negative potential is 

ideally equal to the positive input potential V1 

1 1 2( )b
i

a

R
I i C V V

R
                                                          (S1) 

2 1 2( )iI i C V V                                                                  (S2) 

Here 2 f  and f is the input a.c. current of the circuit. The OpAmp, being an active circuit element, 

can break the circuit reciprocity. To experimentally implement the anti-symmetric parts of the 

Hamiltonian, Rb=Ra is required, which results in  

   1 2I I                                                                         (S3) 

It is shown that the INIC makes the admittances from the node 1 to 2 (g12) and from 2 to 1 (g21) opposite 

as follows 

12 21,i ig i C g i C                                                           (S4) 

Viewed from node 2, the capacitance is positive (i.e. Ci), while from node 1, it behaves like a negative 

capacitance (i.e. –Ci). 

1.2 The topological circuit design  

For a grounded circuit, the Laplacian formalism of admittance matrix is given by4-6 



,J D W C                                                                          (S5) 

where D denotes the total node conductance, W represents the ground matrix and C is the adjacency 

matrix. In our designed topological circuit with three nodes (in Fig. 2a), the total node conductance is a 

diagonal matrix  

1 2

1 3

2 3

0 0

0  0

0 0

C C

D i C C

C C


  
   
  

                                             (S6) 

Each diagonal element involves the sum of all components connected to the corresponding node. The 

adjacency matrix C is characterized by 

1 2

1 3

2 3

0

0 ,

0

C C

C i C C

C C


 
   
  

                                                        (S7) 

where the elements in the matrix determine the hoppings via capacitances between each pair of 

adjacency nodes. The ground matrix W reads 

0

0

1 ( ) 0 0

0 1 ( ) 0

0 0 1 ( )

0 0

( 1 ) 0 0 0 ,

0 0 0

g g g

g g

g g

g

g g

C i R C

W i C i R

C i R

C

i C R I i


 



 

  
   
  

 
     
  

                 (S8) 

which is also a diagonal matrix, and each element denotes the contributions from grounded capacitors 

(Cg and Cg0) and resisters (Rg) to each node.  Inserting Eqs. (S6-8) into Eq. (S5) yields 

1 2 0 1 2

1 1 3 3

2 3 2 3

( 1 )
g

g g

C C C C C

J i C R I i C C C C

C C C C

 
     
      
   

                     (S9) 

By setting 1 1 0 2 2 0 3 3 0 0 0, , , ,gC f C C f C C f C C C     we finally arrive at 



0

1 2 1 2

0 1 1 3 3

( )
2 3 2 3

0

1

( 1 )

( )

g g

J

f f f f

J i C R I i C f f f f

f f f f

i J

 

 

  

     
      
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 




                      (S10) 

where the effective Laplacian J  represents the effective Hamiltonian in Eq. (1) with a common divisor 

C0. Here C0 is set to be 10nF, in consideration of the magnitude of the Hamiltonian parameters and the 

reasonable capacitance range in the circuit system. The AC driving frequency of the system is an 

external parameter and was generally chosen to be 1kHz in the experiments, leaving 2 f   a 

constant. Therefore, the parameters f1, f2 and f3 can be precisely tuned by changing the capacitances C1, 

C2 and C3, respectively. The part 0( )  , results from the equally grounded resistance 1gR M  and 

capacitance 1gC nF  to each node, only contributes to a complex shift of eigenvalues and does not 

have impact on the eigenstates.  

1.3 Experimental operation and observation 

The experimental sample is basically made up of surface mounted device (SMD) capacitors, 

resistors and OpAmps on a printed circuit board (PCB). As shown in Fig. 2b, multiple capacitors are 

parallelly connected between adjacent nodes, and each capacitor is connected by a serial toggle switch, 

so that it can be individually controlled. Hence, the capacitance C1 (as well as C2 and C3) becomes a 

combination of the parallelly connected capacitors. The corresponding f1, f2 and f3 values in the 

Hamiltonian are thus tunable by controlling the switches. The required capacitors (with tolerance of 

1%) in experiments are listed in Table S1, and the three columns are used for tuning C1, C2 and C3, 

respectively. Taking an exceptional point at parameter (f1, f2, f3) = (0.2283, 0.1083, 0.3) as an example, 

it can be achieved by setting C1=2.283nF, C2=1.083nF and C3 =3nF, which are decomposed as the 

following 

C1=43pF+560pF+ 680pF+1nF; 

C2=43pF+150pF+430pF+560pF; 



C3=1.5nF+1.5nF. 

To observe this point, we simply turn on the switches of the corresponding capacitors with the above 

values, leaving others switches off.  

In the experiments, a DC power supply (GPC-3030) served as the dual voltages of ±5V for the 

OpAmps (model ADA4625-1ARDZ-R7) to operate normally. A waveform generator (Keysight: 

M3201A) was used to excite the system and a sinusoidal voltage with constant amplitude (generally 

1V~2V) and frequency of 1kHz was set to feed into each node individually. A matching oscilloscope 

(RS PRO IDS1074B) was employed to measure the voltage response of all nodes in the system. The 

input current can be acquired by connecting a shunt resistor of R=4.21 kΩ from the input node to the 

voltage source. With the measured voltage response to the input current vector, one can directly obtain 

the Green’s function matrix G, which is inverse to the admittance matrix J1-8. The admittance 

eigenvalues and eigenstates are thus easily retrieved from the Green’s function G. 

1.4 Experimental errors 

Although the experimental sample was designed exactly based on the hoppings of the tight binding 

Hamiltonian in Eq. 1 of the main text, slight derivations in the final experimental results from the 

theoretical results inevitably exist, which can be observed in Fig. 3 and Fig. 4 in the main text. The 

experimental errors mainly result from the parasitic capacitance and resistance of the capacitors, circuit 

internal resistance (switch resistance, wire resistance and welding resistance, etc.), INIC circuit 

(stability of the DC power supply and temperature, precision of the feedback resistance, etc.) and the 

measurement errors of the instrument. Here we supplement a set of experimental data with error bars 

that can well display the deviations from the theoretical results. Details are shown in Fig. S2, with the 

five panels corresponding to the panels in Fig. 3a2, respectively.  



2. ADE classification of swallowtail: A4 singularity 

Before introducing the ADE classification, we first need to introduce another mathematical concept, 

which is the orbifold. An orbifold is much like a smooth manifold but possibly with singularities of the 

form of fixed points of finite group actions. A smooth manifold is a space locally modelled on Cartesian 

space/Euclidean spaces n . An orbifold is, more generally, a space that is locally modelled on smooth 

action groupoids (homotopy quotients) / /n G  of a finite group G on a Cartesian space. 

An n-dimensional orbifold is a Hausdorff topological space X, called the underlying space, with 

a covering by a collection of open subsets Ui, closed under finite intersections. For each Ui, there is: 

1. an open subset Vi of n , invariant under a faithful linear action of finite group Γi; 

2. a continuous map φi of Vi onto Ui invariant under Γi, called an orbifold chart, which defines a 

homeomorphism between Vi/Γi, and Ui.  

The collection of orbifold charts is called an orbifold atlas if the following properties are satisfied: 

1. for each inclusion i jU U  there is an injective group homeomorphism fij: Γi→Γj 

2. for each inclusion i jU U  there is a Γi-equivalent homeomorphism ψij, called a gluing map, of Vi 

onto an open subset of Vi 

3. the gluing maps are compatible with the charts, i.e. φjψij=φi 

4. the gluing maps are unique up to composition with group elements, i.e. any other possible gluing 

map from Vi to Vj has the form g.ψij for a unique g in Γj 

The orbifold atlas defines the orbifold structure completely: two orbifold atlases of X give the same 

orbifold structure if they can be consistently combined to give a larger orbifold atlas. Note that the 

orbifold structure determines the isotropy of any point of the orbifold up to isomorphism: it can be 

computed as the stabilizer of the point in any orbifold chart. If i j kU U U  , then there is a unique 



transition element gijk in Γk such that gijkψik=ψjkψij. These transition elements satisfy (Adgijk).fik=fjk.fij, as 

well as the cocycle relation fkm.(gijk).gikm=gijm.gjkm. 

 An ADE singularity is an orbifold fixed point locally of the form */ /n   with Γ*↪SU(2) a 

finite subgroup of SU(2) given by the ADE classification (and SU(2) is understood with its defining 

linear action on the complex vector space 2 ). As is known, the finite subgroups of SO(3) are exhausted 

by the following list: 

1. the cyclic group n ; 

2. the dihedral group 2n , isomorphic to the semidirect product of n  and 2 ; 

3. the groups of motions of the tetrahedron, 12 , of the octahedron, 24 , and of the icosahedron, 60 . 

 Let Γ be a discrete subgroup of SO(3). Consider its preimage Γ*↪SU(2) under the two sheeted 

covering map SU(2) →SO(3). The group Γ* is called the binary group of the corresponding polyhedron 

and acts on 2  as a subgroup of SU(2). Consider the algebra of polynomial invariants of this action of 

Γ*. As it turns out, this algebra is generated by three invariants x, y and z, which satisfy a single relation. 

This relation defines a hypersurface V in the space 2  with coordinates x, y and z. V is naturally 

isomorphic to the orbifold of the action of on Γ* and has an isolated singular point at the origin. 

For a suitable choice of generators in the algebra of invariants, the relations for the binary 

groups of polyhedra are as Table S2. Thus, the orbifold V of the action of a binary polyhedral group on 

2  is isomorphic to the zero level set of the corresponding singularity. 

 The preimage of the singular point on V is a connected union of projective lines: 

1 1
1 2(0) , iC C C C                                                (S11) 

The self-intersection index of each component Ci is equal to -2. Pairwise intersections are described by 

a graph in which a vertex is assigned by to each component Ci, and two vertices are or are not connected 



by an edge depending on whether the intersection index of the corresponding components is 1 or 0. In 

this manner one obtains the Dynkin diagrams (see Fig. S3). 

 The orbit of a point 1nx   such that x1+…+xμ=0 under the action of the group Aμ is described 

by the unordered set of μ points (counting multiplicities) x1, …, xμ on  and is given by the polynomial. 

1
2

1 0
0

( ) ...i
i

t t x t t t


 
  






                                                 (S12) 

With the real coefficients λi(x) corresponding to the parameter space. 

 The swallowtail is the set of zeros of the discriminant of the polynomial, and corresponds to 

the A4 classification, corresponding to a quartic polynomial. The coefficients thus have three degrees 

of freedom λ0, λ1 and λ2, and the swallowtail can be observed in the 3D space by solving zeros the 

discriminant. Our Hamiltonian is rather different. As it is a three-band system, the characteristic 

polynomial of the Hamiltonian (Eq. 1 in the maintext) is a cubic polynomial. The coefficient of the 

cubit term is one, and the coefficients of quadratic, linear and zeroth order terms are functions the 3D 

parameter space f1-f2-f3. Hence, the swallowtail in the band structure cannot be described by the A4 

classification.  

The formation of the swallowtail in eigenvalue dispersions is strongly correlated to the 

symmetries of the system (Eq. 2 in the maintext), which set a constraint to the function forms of the 

coefficients of the polynomial. Modifying the Hamiltonian with the symmetries preserved can lead to 

more complicated gapless structures, but the swallowtail can still exist. To manifest this, we study the 

following Hamiltonians.  

1 2

1 1 3

2 3

2

0

0

f f

H f f

f f

 
   
  

,  
3 1 2

2 1 1 3

2 3 2

f f f

H f f f

f f f

 
    
   

,  
1 2 1 2

3 1 1 3

2 3 2

f f f f

H f f f

f f f

 
   
  

                (S13) 

It is shown that all the Hamiltonians preserve the symmetries in Eq. 2. The singular lines and ESs in 

band structures can be obtained by solving the zeros of the discriminants of characteristic polynomials. 

Results are shown in Fig. S4, where Fig. S4a-c correspond to H1-H3 in Eq. S13, respectively. The 



structure in Fig. S4a exhibits four swallowtails. Within the combination, the elementary degenerate 

lines (EL3s, NIL and NL) can still be observed, and all the four swallowtails remain intact. Figure S4b 

is a little different, as can be indicated: the four swallowtails share the same MP. As a result, the nodal 

lines disappear. This means that within the combination process, it is possible that some swallowtails 

do not remain intact (i.e. some elementary degeneracy lines are annihilated). Figure S4c shows a far 

more complicated structure, which is a combination of more swallowtails. Intact swallowtails in the 

structure are labelled by cyan dashed circles. 

As indicated above, the swallowtails displayed in the three-band system is rather different from 

that described by the A4 ADE singularity. The characteristic polynomial is a cubic polynomial, and the 

coefficients do not form a 3D parameter space, but are functions of a 3D parameter space. Importantly, 

such general cases in mathematics have not been investigated. The frame rotation and deformation of 

eigenstates due to Riemannian geometry is very relevant to the symmetries of the Hamiltonian, which 

is a pathway for understanding the emergence of the swallowtail in band structures. 

3. Parity-inversion (P) symmetry and time-reversal (T) symmetry 

The P symmetry in our paper denotes its original meaning, i.e., the 3D parity-inversion symmetry. And 

accordingly, the PT symmetry just represents the combined symmetry of spatial inversion and time 

reversal. In the momentum space, the P and T operators acting on the k-space Hamiltonian H(k) can 

always be expressed as 

1ˆ ˆ ˆ ˆ[ ( )] ( ) , [ ( )] ( )P H PH P T H H     k k k k                                   (S14) 

where 1 †ˆ ˆ ˆP P P   and 1 †ˆ ˆ    denote local unitary matrices acting on the internal degrees of 

freedom of the Hamiltonian, and H* denotes the complex conjugate of H. Therefore, the combined PT 

operation is given by * 1ˆ ˆ[ ( )] ( )PT H SH S k k  with ˆ ˆ ˆS P . Since 2 *ˆ ˆ( ) 1PT SS  , we know that 

* 1ˆ ˆ ˆ( )TS S S    is a symmetric and unitary matrix, which thus can always be decomposed as 

ˆ TS UU  by a unitary matrix U. Therefore, for any PT-symmetric Hamiltonian in momentum space, 



* 1
0 0

ˆ ˆ( ) ( )H SH S k k , it can always be transformed into a real matrix by a unitary transformation: 

† *
0( ) ( ) ( )H U H U H k k k  (see for example [11]). 

 From the above analysis, we can conclude that a periodic system respects PT symmetry is 

equivalent to the fact that the Hamiltonian of the system in momentum space can always be gauged to 

a real matrix in a proper basis, even if we do not specify the concrete expressions of P and T operators. 

Therefore, for the Hamiltonian used in the present paper, if we identify the parameters f1, f2 and f3 as 

the momentum space coordinates, the real-valued requirement of the Hamiltonian H(f1,f2,f3)=H*(f1,f2,f3) 

is equivalent to that the Hamiltonian is PT symmetric. However, in the real experimental system, the 

parameters f1, f2 and f3 are synthetic dimensions representing the hopping parameters between different 

nodes.  

4. Imaginary parts of eigenvalues 

In the main text (Fig. 3), we provided the theoretical and experimental results on the real parts of 

eigenvalue dispersions at different cut planes in the parameter space. Here, we provide the 

corresponding imaginary parts on these cut planes. Results are shown in Fig. S5, where Fig. S5a-d 

corresponds to Fig. 3a-d in the main text, respectively. As can be indicated, the linear crossings in the 

panels of Fig. 3b2 (apart from the middle one) are not degeneracies. This is because these points are in 

the broken phase, where the real parts of the second and the third bands coincide, but their imaginary 

parts are complex conjugate to each other (as indicated in the panels in Fig. S5b). In addition, the other 

band takes real values. Thus only the real parts of the three eigenvalues coincide at these points, while 

their imaginary parts are different. These points are therefore different from the other degeneracies, i.e. 

ESs, NIL, NL, EL3s and MP. Such points with real parts of all three eigenvalues coincide lie on the 

“bulk-Fermi arc”, as details introduced in Section 8.  



5. Riemannian geometry of evolution of eigenstates 

Here we demonstrate that the evolution of eigenstates as system parameters vary is based on 

Riemannian geometry. The pseudo-Hermitian operator that determines the symmetry of the 

Hamiltonian plays a similar role to the Minkowski metric in general relativity9. The evolution problem 

is governed by the equation 

m mH i                                                                     (S15) 

where   denotes a path parameter, and m  are the eigenstates. The completeness of eigenstates (off 

ES) shows that any field can be expanded as 

1( ( )) [ ( ( ))] ( ( ))m
n n m

m

U                                                       (S16) 

where   denotes the parameter space of the Hamiltonian with components 1 2 3, , ...   . It is not 

difficult to find that n  is also the solution of Eq. S15. In static evolution problems, ( ( ))n    

represents ( ( ))n    . Applying the partial derivative with respect to  , one obtains 

1

1
1

( ( )) [ ( ( ))] ( ( ))

[ ( ( ))] ( ( ))
( ( )) [ ( ( ))]

m
n n m

m
mn m

m n

i H U

U
i i U

       


        
 











 
 

 

                  (S17) 

The instantaneous eigenvalue problem 

( ( )) ( ( )) ( ( ))m m mH E                                                           (S18) 

and applying a scalar product by the left eigenstate l  from the left of Eq. S17 yields 

1
1 1( ( ))[ ( ( ))]

[ ( ( ))] [ ( ( ))]
l

ml mn
l n l n

U
iE U U

       
 


    

 
                 (S19) 



The partial derivative with respect to  can be expanded as 

( ( )) ( ( ))
, ( 1,2,3...)

k
m m

k
k

k
      

  
  

 
                               (S20) 

We define the affine connection 

( ( ))mn
k m n n mk k

A
  

  
 

     
 

                                   (S21) 

and the solution to U–1 is thus obtained as 

( )1

0 0 (0) 0
P exp[ ( ( ))] P exp( ) exp[ ( ( ))]

k
k

k kU ds A i dsE s d A i dsE s
s

    



    
    

            

(S22) 

Ignoring the dynamical phase, the geometric phase is simply 

( )1

(0)
Pexp( )k

kU d A
 


                                                          (S23) 

where P denotes path ordering operator, which is important here, because the affine connection A is a 

matrix. Considering the non-commutative nature of matrix product, A is a non-Abelian parallel transport 

gauge9-10, and the integration of A on closed loops depends on the path circulating singularities. Here 

we define a local metric g with its elements being  

|mn m ng                                                                (S24) 

which has explicit relations with the affine connection. The symmetries (Eq. 2 in the main text) of the 

Hamiltonian provide an important relation between the left and right eigenstates 

T
m m     (or equivalently, T

m m   , *
m m    , *

m m    )                 (S25) 

This relation provides an orthogonality to the right eigenstates 



0

0
T
m n

m n

m n
 

 
 

                                                         (S26) 

The orthogonal relation shows that the arbitrary phase can always be removed by normalizing the 

eigenstates (up to an unfixed sign) 

m
m T

m m


 

                                                               (S27) 

The normalization of eigenstates can make g a constant matrix and thus the partial derivative with 

respect to the path parameter vanishes 

0 |mn m ng                                                            (S28) 

Inserting the identity operator l l l l
l l

I        , one obtains 

| |
k k km n m l l n m l l n

l l
                                  (S29) 

We note that  

* ** *| | | | |
k k k km l m l l m l m                                      (S30) 

and thus we have  

*0 l l
k m ln ml k nA g g A                                                         (S31) 

It is necessary to check if the relation still holds when we add a constant phase factor to eigenstates 

, ,m m f m fU  . Note that we always normalized the eigenstates to have the identity inner product 

, , 1m f m f   , i.e. *
, ,m m f m fU    and thus 2

, , ,( )T
m f m f m fU    . The identity operator becomes 

, , , ,l f l f l f l f
l l

I        , and Eq.  (S30) is thus 
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l

m f m f l f l f n f n f
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 



       

    

  

 




                 (S32) 

It can be found that the phase factor *
, ,m f n fU U  on the right hand side can be extracted, and thus Eq. 

S31 still holds. It is sometimes convenient to define the affine connection as (simply a replacement

2
, , ,( )T

l f l f l fU    ) 

n
k m n mk

A   



 


                                                   (S33) 

In exact phases, g is diagonal, and the phase factor 2
,( )l fU  on the right hand side of Eq. S32 can be 

extracted, and thus Eq. S30 still holds. This important relation (Eq. S31) between the local metric g and 

the affine connection A reveals the Riemannian geometry of the evolution process of eigenstates as 

parameters vary. In the next section, we will use this equation to predict the emergence of exceptional 

surfaces (ESs) and nodal line (NL).  

6. Predicting the emergence of NL and ESs from the viewpoint of frame 

rotation and deformations and the relationship with general relativity 

If the metric operator η takes the identity matrix (with PT symmetry preserved), then the three 

eigenstates are all space-like and perpendicular to each other. For this case, the pseudo-Hermiticity of 

Hamiltonian reduces to the Hermiticity, and the anti-symmetric elements in the Hamiltonian matrix 

become symmetric. Such PT symmetric Hermitian Hamiltonians have been investigated in Ref. [11], 

where the eigenstates are all real and orthogonal 0 ( )a b a b    , and have positive self-inner 

products 0a a   . We note that such three eigenstates can form the orthonormal bases of a 

Euclidean space, and thus transform based on Euclidean geometry12. The positive inner products of 

eigenstates determines that the eigenstates are all space-like9, and the transformation within these 



eigenstates as the system’s parameters change simply induces the frame rotations9,11,12. As indicated by 

Fig. S6a, each one of the three perpendicular space-like vectors ( a


, b


and c


) can act as a rotation 

director, and the other two vectors are rotating along the director. The orthogonal relation forbids the 

deformation of the frame (composed of three perpendicular eigenvectors). Therefore, it is impossible 

that any two eigenstates become parallel to each other within the evolution process as parameters 

changes. Such a frame rotation of eigenstates is determined by the Hermiticity and PT symmetry of the 

system11, which gives rise to isolated nodal lines (NL) carrying quaternion topological charges in the 

parameter space. However, for our case,   is replaced into a Minkowski metric form (the main 

consequence of non-Hermiticity), and the eigenstates are in general not perpendicular to each other, 

owing to the orthogonal relation defined by the indefinite inner product in Eq. (S26). One of the three 

eigenstates is a time-like vector t


 (which has a negative self-inner product 0t t   , distinguished 

from the other space-like vectors with positive inner products), and the transformation between the 

time-like vector and a space-like vector (e.g. b


) is characterized by Lorentz boost. The Lorentz boost 

will result in the fact that b


 and t


 are rotating in opposite directions, which is a form of the frame 

deformation (ignore the scale change) distinguished from frame rotation (Fig. S6a), as indicated by Fig. 

S6b. Within the frame deformation process, two eigenstates can be parallel or anti-parallel to each other 

(Fig. S6c-d), signifying the emergence of ESs. 

We first consider the PT-exact phase regions. In these regions, one of the three eigenstates is 

always imaginary, and the other two are real after the normalization by Eq. S27. For the imaginary 

vector, the indefinite inner product m m   is negative, showing that it is a time-like vector. The 

other two have positive inner products 0n n   , which are space-like vectors. Observing the 

definition of the local metric g (Eq. S24), a region that is a PT-exact phase may have one of the following 

metric forms (sequence of eigenstates are defined by ordering eigenvalues from small to large) 

1

1 0 0

0 1 0

0 0 1

g

 
   
  

, 2

1 0 0

0 1 0

0 0 1

g

 
   
  

, 3

1 0 0

0 1 0

0 0 1

g

 
   
  

                         (S34) 



It is notable that for a specific region, the local metric is invariant. The evolution of eigenstates is 

strongly associated with the metric form as revealed by Eq. S31. The inner product space is also the 

origin of Lorentz transformations as the parameters vary.  

Next, we show that the Riemannian geometry can be used to predict the emergence of ES and 

NL. In the swallowtail catastrophe for our system, the parameter space is partitioned into three regions 

by the ESs, as shown in Fig. S7. Here Reg I and Reg II are the PT-exact phases, and Reg III is the PT-

broken phase. We take Reg I as an example. The local metric g of Reg I can be obtained as g1. If we 

gauge the imaginary vector to be real, then all the eigenstates are real, and the definition (Eq. S33) 

shows that the affine connection is also real. Hence, Eq. S31 reduces to  

0 l l
k m ln ml k nA g g A                                                         (S35) 

The metric is diagonal, and one can easily demonstrate that the affine connection is a linear combination 

of the following elementary matrices 

1 2 3

0 1 0 0 0 1 0 0 0

1 0 0 , 0 0 0 , 0 0 1

0 0 0 1 0 0 0 1 0

T T T

     
            
          

                                (S36) 

which are the Lie algebraic generators of SO(2,1) group. This is exactly the Lorentz transformations in 

2+1D space-time in general relativity. The matrix U in Eq. S23 is the exponential of a linear 

combination of T1-T3, and is thus an element of SO(2,1) group, which is determined by the symmetries 

of the system (Eq. 2 in the maintext). It is shown that T2 and T3 characterize Lorentz boost between 1  

and 3 , and between 2  and 3 , respectively. While T1 characterizes the rotation of 1  and 2 . It is 

obvious that T1 will induce the frame rotations, while T2 and T3 will induce the frame deformations. We 

first consider the frame rotation, the π rotation of 1  and 2  is expressed by the operation 

1 2 3 1 1 2 3[ , , ]exp( ) [ , , ]T                                                (S37) 



bringing 1  and 2  to their opposite directions, which are still the eigenstate at the same point in 

parameter space. Consider a closed loop on which the eigenstates adiabatically evolve and accumulate 

a matrix form geometric phase (πT1 in Eq. S37). The loop simply circulates around the nodal line (NL), 

and the polarizations of 1  and 2  rotate π. This is a way for predicting the existence of the NL formed 

by the first and the second bands relating the rotation of eigenstates in a loop to the existence of 

singularities (degeneracies) inside the loop. In the next section, we will show that the NL cannot be 

extended to a tube of ES, which is symmetry protected. 

The frame deformation process is more complicated, and it is strongly associated with 

hyperbolic transformations (Lorentz boost). However, the ES is still predictable. The Lorentz boost 

between the second and the third bands can be characterized by 

1 2 3 3[ , , ]exp( )T                                                           (S38) 

and the matrix exponential is  

3

1 0 0

exp( ) 0 cosh sinh

0 sinh cosh

T  
 

 
   
  

                                             (S39) 

As   approaches +∞, we have the relation cosh sinh    , resulting in two parallel vectors 

1 2 1 2

1 2 1 2

cosh sinh ( )

sinh cosh ( )

      
      

  
  

                                           (S40) 

Similarly, as   approaches –∞, cosh sinh     , one obtains another pair of anti-parallel 

vectors 

1 2 1 2

1 2 1 2

cosh sinh ( )

sinh cosh ( )

      
      

  
   

                                         (S41) 

In gapped states,   cannot approach infinity by an integration along a path, and an infinitely large   

can only be realized when a path approaches the exceptional surfaces. Consider a tracking point in the 



gap,   approaches infinity (say +∞) as the point moves in one direction and approaches an ES, and 

approaches ∞ at the point approaches another ES. This indicates that   varying from +∞ to 0 and to 

-∞, represents a process that a point departs from one ES and the states becomes gapped and finally 

arrives at another ES. The corresponding eigenstates are parallel at the initial point on the ES, bifurcate 

in the gap and finally evolves to two anti-parallel eigenstates on another ES. This is exactly the frame 

deformation process, and the key signature is that the corresponding eigenstates are rotating in opposite 

directions. With this deformation process, it can be assured that there will be an intersection between 

the two ESs (i.e. NIL). In the next section, we will show that the frame deformation can be associated 

with a conventionally defined Berry phase. It is notable that this process depends on the path selected, 

because the topology of other singularities (e.g. the NL) may participate and induces extra rotations to 

the eigenstates. More details will be discussed in Section 9. The eigenstates that coalesce are 2  and 

3 , and thus the ES, being the boundary of Reg I, are formed by the second and third bands. As such, 

the NIL is also formed by the second and the third bands. We note that the 1  and 3  also experience 

Lorentz boost, but the second band blocks the formation of ES between the first and the third bands. In 

Section 9, we will provide enough experimental and theoretical data for characterizing different 

singularities with frame rotation and deformation of eigenstates. 

If we consider Reg II with metric g2, the Lie algebraic generators will be  

1 2 3

0 1 0 0 0 1 0 0 0

1 0 0 , 0 0 0 , 0 0 1

0 0 0 1 0 0 0 1 0

T T T

     
              
          

                                (S42) 

meaning that ESs can be formed by the first and the second bands, or by the second and the third bands 

(due to frame deformation characterized by T'1 and T'3). The coalescence of the two ESs forms cusps, 

which are EL3s. We also note that there is another rotation between 1  and 3  (i.e. exp(πT'2)), but the 

first and the third bands cannot form an NL directly (blocked by the second band). Regions having the 

local metric g3 is also possible, but such regions are not present in the considered parameter ranges of 



the Hamiltonian (Eq. 1 in the maintext). We will not give more analysis. For exact phases, regions with 

different local metrics are not connected, and are separated by broken phase. 

 The broken phases have very different forms of local metrics compared with the exact phases. 

In broken phases, there will always be a pair of eigenstates that are conjugate to each other, and the 

other eigenstate is real. The local metric in broken phase is not diagonal but is a Hermitian matrix 

instead. Possible forms can be (note that the eigenstates are properly normalized) 

4 5

0 1 0 1 0 0

1 0 0 , 0 0 1

0 0 1 0 1 0

g g

   
       
      

                                             (S43) 

We note that there is always a vector having a positive inner product, which is a space-like vector. The 

other two vectors have null self-inner products, but their mutual inner products are nonzero. Such pair 

of vectors are called light-like vectors in general relativity9. The light-like vectors were first introduced 

by Penrose, which is used to investigate how to bifurcate a pair of coalesced time-like and space-like 

vectors. It is previously imagined that light-like vectors might be found when crossing the event horizon 

of a black hole. Hence, the ES in parameter space might be an analog of event horizon. In the eigenvalue 

dispersions of our model, the light-like vectors in broken phase can be associated with one time-like 

vector and a space-like vector in exact phase. When a tracking point approaches ES from the exact 

phase, the two vectors coalesce via frame deformation, and then they bifurcate to form a pair of 

conjugate light-like vectors when the tracking point departure from ES to broken phase. The regions 

with different local metrics g in broken phase are path connected, contrary to exact phases. The 

boundary between these regions with different metrics is a surface with real parts of all three 

eigenvalues being degenerate. Such a surface is a “bulk Fermi-arc”, which connects the double EL3s. 

This is a consequence of the swapping of eigenvalues at EL3s, as mentioned in the maintext (also see 

Section 8). The surface is not a degeneracy because the imaginary parts of eigenvalues are not 

degenerate. 



7. Stability of NIL and NL under PT and pseudo-Hermitian symmetries 

In this section, we demonstrate that the NIL and NL are symmetry protected and are stable in parameter 

space. The method in the demonstration follows13. We first consider the NIL (Fig. S8a). To demonstrate 

that the two ESs intersect stably, we need to show that the two ESs cannot be gapped, i.e. the two 

possible ways (shown in Fig. S8b-c) to form a gap are prohibited. In previous discussions, we defined 

a local metric g. The pseudo-Hermiticity of the system require that g is invariant in specific regions, 

and we have already shown that the g matrix in exact phases, Reg I and Reg II, are in the forms of g1 

and g2 [see Eq. (S34)]. Thus Reg I and Reg II cannot be connected without gap closing. Therefore, the 

possibility of opening NIL in Fig. S8b can be excluded. Next, we consider Fig. S8c. In the previous 

section, we show that along a path from one ES to the other (e.g. the dark blue path in Fig. S8a), if two 

initially parallel eigenstates (e.g. 2  and 3 ) rotate in opposite directions (frame deformation, upper 

panel of Fig. S8e) and finally evolve to two anti-parallel states, there must be an intersection of the ESs 

(NIL in Fig. S8a). This can be demonstrated in view of Berry phase. Consider the vertical red loop in 

Rej-f1-f2 3D space in Fig. S8d, which is formed by joining the trajectories of the two eigenvalues along 

the dark blue path together (in Fig. S8a), and we concatenate the two branches of eigenstates 2  (blue) 

and 3  (black) as the loop passes the ESs. The frame deformation process shows that the eigenstate 

will rotate π along the loop (i.e. the relative rotation angle between 2  and 3 , see the lower panel of 

Fig. S8e). If we calculate the Berry phase with the integration along the vertical loop 

fi                                                            (S44) 

it is not difficult to show that the Berry phase is equal to the relative rotation angle π. The frame 

deformation is thus well connected with the conventional Berry phase. This non-trivial Berry phase 

shows that the loop cannot shrink to a point, and there must be a singularity (i.e. the NIL) preventing 

the shrinking process. Hence, the band structure in Rej-f1-f2 space form a lying-flat Dirac cone, and the 

NIL is simply the vertex (Fig. S8d), which prevents the red vertical shrinking to a point. We thus 



understand that the possibility of opening the NIL in Fig. S8c can be excluded. The above analysis 

demonstrates that the NIL is stable and is protected by the symmetries of the system. 

 In the previous section, we claimed that if the accumulated geometric phase of eigenstates is a 

matrix πT1 (Eq. S37) along a closed loop, then the loop circulates an NL formed by the first and the 

second bands. Here we demonstrate that the NL, which cannot be extended to a tube of ES in parameter 

space, is protected by the symmetries of the system. We still take Reg I with g1 as an example. The NL 

is formed by the first and the second bands, and the inner products of the corresponding eigenstates are 

both positive ( 11 22
1 1 1g g  ), where the superscript indices denote the elements in g1. To achieve our 

target, we need to demonstrate that these two eigenstates with the same inner products cannot form ES. 

At ESs, the right 0  and left 0  eigenstates, and the generalized eigenstates 0  and 0   satisfy 

† *
0 0 0 0

† *
0 0 0 0 0 0

( ( ) ) 0, ( ( ) ) 0

( ( ) ) , ( ( ) )

ES ES

ES ES

H f H f

H f H f

   

     

   

    
                        (S45) 

Note that our symmetries enforce † TH H . The eigenstates and generalized eigenstates satisfy the 

relations 

0 0 0 0

1 0 1 0 1 0 1 0

0, 0,

0

   

       

  

      
                                (S46) 

where 1  (right) and 1  (left) are another pair of eigenstates with a different eigenvalue 0   . 

The eigenstates and generalized eigenstates are generally not unique, because one can always perform 

the following transformations 

0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0

,

, ,

a b

a a b b

   

     

  

     
             (S47) 

It is safe to introduce the orthonormal conditions to reduce the undetermined degrees of freedom14, 

0 0 0 0 0 00, 1                                                  (S48) 



On ESs, the left and right (generalized) eigenstates can be associated via 

0 0 0 0 0
0

0 0 0 0 0 0 0
0

1
,

1
( ), ( )c c

      


        


  

     
                     (S49) 

where 0  and c are real under the normalization condition Eq. S48. Starting from ES, the perturbation 

of eigenvalues and eigenstates nearby the ES can be expressed as14 

1/2
0

1/2
0 0

1/2
0 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ES

ES

ES

f f f f O f

f f f f O f

f f f f O f

      

       

       







   

   

     

                        (S50) 

with  

0 0 0 0( ) | ( ) | | ( ) | /
if ES f ES if H f f H f f f                         (S51) 

where the normalization condition Eq. S48 is used, and also imposed another two normalization 

conditions 0 ( ) 1ESf f      and 0 ( ) 1ESf f     . If f  takes the point off ES, we 

have ( ) 0f   . The two symmetries of our system imply that  
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                       (S52) 

meaning that *( ) ( )f f     . Therefore, the eigenvalues near ES should be either real if

( ) 0f    or form a complex conjugate pair if ( ) 0f   . We can now calculate the inner products  
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If f  takes the tracking point off ES and into exact phase (e.g. Reg I, 0 , ( ) 0f    ), the two 

eigenstates bifurcate from the eigenstates on ES must have inner products with opposite signs13. Thus 

on the boundary of Reg I, only the second and the third bands can form ES. Conversely, the two 

eigenstates having inner products with the same sign cannot form ES, and the degeneracy between the 

two eigenstates must be non-defective. We can thus understand why the NL formed by the first and the 

second bands is stable against expanding to a tube of exceptional points. 

8. Swapping of eigenvalues and “bulk Fermi-arcs” 

In non-Hermitian systems, eigenvalues may swap as the parameters vary along a closed loop. As a 

result, the two singularities will be connected by a bulk Fermi-arc15. In this section, we will discuss two 

examples, and the cusps (EL3s) will be included in the discussion. 

 We first consider a Hermitian case, i.e. the 2D Dirac points16 or 3D nodal lines9. The eigenstates 

evolving adiabatically along a loop circulating such singularities will accumulate a π geometric phase. 

The final states are the same as the initial states up to a minus sigh. Within the evolution process, the 

sequence of eigenvalues is explicit, because the eigenvalues are always real in Hermitian systems. 

However, in non-Hermitian systems, the situation will be different. Let us consider a simple example, 

which is a two-band model, and the Hamiltonian takes the form17 

1 2 1 2( ) ( ) x yH i k k      k                                               (S54) 



The band structure is shown in Fig. S9a, which has two isolated exceptional points (EPs) in parameter 

space. It can be easily found that the two EPs comes from the splitting of a Hermitian Dirac point by 

introducing non-Hermitian perturbations (the term iσ2 in Eq. S54). The topology of the two EPs can be 

investigated by closed loops p1 and p2 circulating them (p1 and p2 have the same basepoint, the red point 

in Fig. S9a). By observing the evolution of eigenvalues on a closed loop circulating the EP, the two 

eigenvalues are braiding, resulting in a swapping 1 2   (simultaneously 1 2  , see Fig. S9b-c). 

As a result, the eigenstates cannot evolve to the initial states after one cycle on each of the loops. 

However, if one considers the composite loop p1p2, the braiding of the eigenvalues will cancel, because 

the eigenvalues are braiding in opposite directions (see the red arrows in Fig. S9b-c) along p1 and p2. 

Along the composite loop, each branch of eigenstates will accumulate a π geometric phase, equivalent 

to the topology of a 2D Dirac point. We find that the swapping of the eigenvalues is a decomposition 

process. As a physical consequence, the two exceptional points are connected by a “bulk Fermi-arc”, 

on which the real parts of all eigenvalues coalesce15. A loop circulating an exceptional point cannot 

avoid traversing the bulk Fermi-arc, which is a critical point that swaps the eigenvalues. 

The EL3 is a similar example, but the swapping process is a little different compared with an 

isolated exceptional point. In catastrophe theory, the cusps are formed due to the folding of curves in 

higher dimensions18. In band structures, the EL3s emerge in the same way. As can be obviously 

indicated in Fig. 1b of the maintext, the ES is folded at the cusps in the 3D space (Reω-f1-f2). Hence, if 

a tracking point passes the EL3 along the ES, the eigenvalues experience a swapping ( 1 2,3   and 

2,3 1  ) process. In Section 9, we will show that this swapping process is a quotient map. If the 

tracking point keeps moving along the ES and passes the other EL3, the eigenvalues swap back 

( 2,3 1   and 1 2,3  ). We note that this swapping process is a little different from that of a single 

exceptional point, because the process involves three eigenvalues, i.e. two eigenvalues coalesce and 

swap with the other. This process will also lead to the “bulk Fermi-arcs”. As indicated by Fig. 1b, each 

EL3 is connected by an arc, on which the real parts of all three eigenvalues coincide. If a tracking point 

cross the bulk Fermi-arc in broken phase, there will also be a swapping of eigenvalues ( 2,3 1   and 



1 2,3  ), acting as a critical point. It is notable that the two EL3s are connected by the same arc, 

because the EL3s are emitted from the same point (i.e. the MP). 

9. Topologically characterizing singular lines in the swallowtail with frame 

deformation and rotations 

The swallowtail catastrophe singularity is a typical hypersurface singularity. It includes two 

singularities (NIL and EL3s) that can cannot be found in Hermitian systems, and also has an NL, which 

has been widely observed in Hermitian systems. It is thus an intriguing phenomenon that these singular 

lines, which seems unrelated to each other, can mutually convert to each other via the meeting point 

(MP). The ESs in the swallowtail constitute a subspace of the parameter space and are singular 

hypersurfaces. NIL and EL3s are singularities on ES, which are higher order singularities compared 

with ES. Such a gapless structure is called a stratified space in topology, and the parameter space is 

decomposed into pieces called strata18. For example in the swallowtail, the first stratum is the whole 

parameter space, and the second stratum is the ES, being the subspace of the parameter space. The third 

stratum is composed of the singular lines, including NL, NIL and EL3s. Next, we provide a more 

detailed topological characterization of the swallowtail based on the frame deformation and rotation. 

Such treatment is compatible with the intersection homotopy theory19. 

Before a detailed discussion on the topological characterization, we need to introduce the 

following criterions on the loops and paths in parameter space:  

1. The topological characterization focuses on the singular lines in the swallowtail. Hence, traversing 

ESs is inevitable if the enclosed singularity is a hypersurface singularity (e.g. NIL and EL3). Therefore, 

traversing ESs is allowed for the loops and paths, but traversing the singular lines (including NIL, NL 

and EL3) is not allowed. 

2. If a loop traverses the ESs, it will be segmented into several paths that are located in different regions. 

The evolution of eigenstates along each of these paths can be described by the frame deformation and 



rotation processes. The evolution along the loop is thus the combination of these processes (e.g. Fig. 

4a-b in the maintext). 

3. It is sometimes necessary to investigate loops or paths that are partially located on ESs, and the 

hypersurface singularities (e.g. NIL and EL3) partition these loops or paths into several segments. These 

segments are concatenated via quotient maps under equivalence relations. The quotient map does not 

mean that the loop or path passes the NIL or EL3 directly, which thus does not contradict criterion 1. 

Details on the quotient maps will be introduced in the following (mainly for loops 2 2l l  and l3 in Fig. 

S10b, and 4 4l l  and l5 in Fig. S11a). 

4. If a loop can be continuously deformed to another one without encountering singular lines (NL, NIL 

and EL3), the two loops are equivalent. Equivalent paths are defined in the same way, and additionally, 

the starting points (and ending points) of the two paths are required to be consistent. Encountering ESs 

within the deformation process of the loops (or path) does not change the topology. 

We next investigate the topology of the singular lines under the four criterions. We put the 

swallowtail into a sphere (Fig. S10a), so that all the singular lines and ESs can be projected onto the 

spherical surface viewing from the center (i.e. the MP, Fig. S10b). Among all the singular lines, the NL 

should be the simplest case, because it is totally isolated from the ESs. It can be enclosed by the loop l1 

(see Fig. S10b), on which the measured eigenvalues j1, j2 and j3 are shown in Fig. S10c1 with red, blue 

and black balls respectively, falling on the computed bands (orange, blue and green surfaces) from Eq. 

(1) in the main text. The corresponding frame rotation of eigenstates 1 , 2  and 3 (red, blue and 

black balls respectively) obtained from the experiments is shown in the upper panel of Fig. S10c2, with 

the theoretical results in the lower panel for comparison. Note that for NL, the frame rotation is 

dominant, as discussed in Section 6. The increase of ball size denotes the variation of parameters from 

the beginning to the ending points along the loop. It can be observed that 1  and 2  rotate π in the 

same direction, similar to the quaternion rotation11.  



Different from the NL, the NIL and EL3s are hypersurface singularities, the characterization of 

their topology would be much more complicated. The loops enclosing such singularities will be 

considered as a concatenation of several paths (or loops), and each of these paths (or loops) will be 

confined in a single region. Importantly, these paths (or loops) can be terminated at ESs, or partially 

located on ESs, which is compatible with our frame deformation method. It is necessary to introduce 

the paths (or loops) that are confined in a single region before we further discuss closed loops that are 

formed by the combinations of them. We firstly focus on the exact phases. The NIL is a complete 

intersection of ESs, and its topology in the exact phase is characterised by the loop 2 2l l  in Fig. S10b. 

This loop should be understood as the concatenation of two paths l2 (lower region) and 2l  (upper region), 

both of which are partially located on ESs as indicated by Fig. S10b. Note that we do not call l2 and 2l  

loops because the two terminal points of l2 (and 2l ) infinitely approach the NIL along the ES. This 

means that the terminal points are on different ESs, having different eigenstates. The starting point of 

2l  is concatenated with the ending point of the l2 via a quotient map. These two points have the same 

eigenvalues and eigenstates as they both infinitely approach the NIL along the same ES, which is an 

equivalence relation, and thus can be identified. It is notable that j1 at the ending point of l2 is glued to 

j1 at the starting point of 2l . At the same time, the coalesced bands j2,3 (forming ES) at the ending point 

of l2 is glued to j2,3 (coalesced, forming ES) at the starting point of 2l . This is the criterion of the quotient 

map. Similarly, the ending point of 2l  can be glued to the starting point of l2, and thus 2 2l l  forms a 

closed loop as a shape of “figure 8”. The gluing process (quotient map) does not mean that the loop 

traverses the NIL, which does not contradict Criterion 1. Figure S10d1 shows that the measured 

eigenvalues j2 and j3 coalesce at the sections located on ES (red line), as expected. Contrary to the frame 

rotation on l1, the eigenstates 2  and 3  along the loop 2 2l l  are observed to bifurcate in opposite 

directions (Fig. S10d2) and rotate –π and π respectively, which is attributed to the Lorentz boost 

(mathematically characterized by Eq. S38-39). This process is exactly the frame deformation. With 

regard to the path l2, the two eigenstates rotate θ–π and θ respectively, evolving to antipodal points on 



the sphere, as shown in Fig. S10d2. As an intuitive interpretation, 2  and 3  are parallel at the initial 

point and evolve to anti-parallel states at the ending points of l2, which is consistent with our analysis 

in Section 7.  

Rather than intersections, EL3s are cusps, which are geometrically treated as the projections of 

folded curves in higher dimensions. As we discussed previously, such folding process corresponds to 

the swapping of eigenvalues in band structures. In mathematics, this swapping is a consequence of a 

quotient map. We can take the loop l3 as an example, which can characterize the topology of the pair of 

EL3s in exact phase (Fig. S10b). As can be indicated, l3 also partially locates on ESs, and the existence 

of EL3s partitions the loop into several segments. To concatenate these segments, we need the quotient 

maps. The two points infinitely approaching the EL3 (e.g. at point Q in Fig. S10b) along the ESs have 

the same eigenvalues and eigenstates and can be identified. To glue the two points together, it is notable 

that the two coalesced bands forming exceptional points should be glued together, following the same 

criterion as gluing the terminal points of l2 and 2l . For example, the exceptional point on the lower side 

of Q is formed by j2 and j3, and should be glued to j1 and j2, which form the exceptional point on the 

upper side of Q. This gluing process is exactly the swapping of eigenvalues. Along the loop l3, the 

quotient map will be operated twice at Q and P, respectively. Therefore, we can observe the swapping 

1 2,3j j  twice when the loop “passes” the EL3 (Fig. S10e1), and thus eigenvalues evolve to the initial 

values for one cycle along l3. This quotient map is reasonable because the EL3s are connected by the 

“bulk-Fermi arcs”, and the “bulk-Fermi arc” is always a critical point the swaps the eigenvalues 

whenever a tracking point passes it (see Section 8). Similar to 2 2l l , 1  and 3  on l3 are rotating π in 

opposite directions (Fig. S10e2). At this point, we confirm that on both 2 2l l  and l3, the eigenstates are 

experiencing frame deformations, which are distinguished from the frame rotation for quaternion 

topological charges19. This is a consequence of the orthogonality in Eq. S27. 

In broken phase regions, the topology of NIL can be characterized by the loop 4 4l l  in Fig. S11a. 

Figure S11b1 shows that the real parts of eigenvalues j2 and j3 are degenerate, for the reason that the 



two eigenvalues are always conjugate in broken phases. The frame deformation is also extended to 

complex space. Along the path l4, 2  and 3  experience a bifurcation process as they keep conjugate: 

the real parts of both eigenstates decrease to zero, and simultaneously their imaginary parts increase 

from zero (Fig. S11b2). As a result, the two real parallel eigenstates evolve to two imaginary ones that 

are anti-parallel to each other via the process (antipodal points on the imaginary sphere). This indicates 

that via the evolution along 4 4l l , 2  and 3  rotate π and –π in complex space, which is still a frame 

deformation process as exhibited in Fig. S11b2. The topology of the double EL3s in broken phase is 

studied through the loop l5 (Fig. S11b). The loop also partially locates on ESs and is partitioned by the 

EL3s. These segments of l5 are concatenated via quotient maps using the same criterion as l2 and 2l . 

Hence, the swapping of eigenvalues 1 2,3j j  occurs four times along l5, twice of which are due to the 

traversing of bulk Fermi arcs, and the other twice are due to quotient maps at Q and P (see Fig. S11c1). 

The corresponding frame deformation of the eigenstates is shown in Fig. S11c2. We note that the 

accumulated rotation angles for all the eigenstates are zero, meaning that l5 is trivial.  

We then proceed to discuss the relationships of these loops. As mentioned above, along l2 the 

two eigenstates ( 2  and 3 ) are parallel at the initial points and evolve to two anti-parallel to each 

other at the ending point (Fig. S11d2) via a frame deformation process. However, along path l6 (Fig. 

S11a), being the product of l2 and l1, the situation becomes very different. We can observe from Fig. 

S11d2 that both 2  and 3  rotate to the same point (say, the rotation angle is θ) on the sphere even 

though they bifurcate on the segment off ES (i.e. the two eigenstates are still parallel at the ending point 

of l6). Additionally, 1  experiences a π rotation. This can be intuitively understood, because the 

topology of NL (e.g. along l1) provides an additional π rotation to 1  and 2 . Since 2  and 3  rotate 

the same angle and arrive at the same point along l6, it is optional whether the two eigenstates bifurcate 

in the intermediate process (contrary to l2), meaning that it is always possible to stretch l6 so that it is 

totally located on ES (i.e. 6l   in Fig. S11a). From this point of view, we can determine that the NIL is a 

self-intersection of ES, and the NL plays a role of vortex for bending the ES. The two eigenstates can 



also bifurcate in the complex space, suggesting that one can continuously stretch 6l   to the broken phase 

( 6l   in Fig. S11a). All of these three loops are equivalent to each other. This indicates that encountering 

ES within the path (loop) deformation process does not change the topology (i.e. the final path or loop 

is still equivalent to the original one), which demonstrates Criterion 4. Then we come to the path l7 (Fig. 

S11a and Fig. S11e1), which is the product 1
2 3 5l l l (or simply 1

2 3l l , l5 is trivial). As shown in Fig. 

S11e2, along l7, both 2  and 3  rotate θ (the same as l6), but 1  rotates –π (opposite to l6). Thereby 

the relationship between l6 and l7 cannot be constructed directly, and the paths l4 and 4l  (Fig. S11a) 

should be employed as a bridge. On the composite path 1
4 6 4l l l  (Fig. S11f1), the rotation direction of 

2  and 3  is reversed (i.e. –θ) and 1 remains rotating π (Fig. S11f2), which is opposite to l7, and thus 

one obtains a crucial relation 

1 1
4 6 4 7l l l l    or 1 1

4 7 4 6l l l l                                                       (S55) 

Hence, we can understand that the path 1
4 6 4l l l  ( 1

4 7 4l l l  ) can be continuously deformed to 1
7l
  ( 1

6l
 ) 

without encountering any other degeneracy lines (see Fig. S11g1). This relation also ensures the 

following two transition processes. It can be easily derived that the loop 1
3 5l l  ( 1 1

7 2 5l l l  , l5 is trivial) 

enclosing the double EL3s is equivalent to 1 1
4 6 4 2l l l l   circulating the NIL and NL (Fig. S11g2). Hence, 

the double EL3s cannot annihilate each other, but will transit to the NIL and the NL via the MP. This 

equivalent relation is also demonstrated in the maintext in another decomposition method, and the 

consequences via the two methods are consistent. One can also derive that 1l  ( 1
6 2l l ) is equivalent to 

1 1 1
4 7 4 2l l l l   , so that the NIL and the double EL3s can merge and transit to an NL via the MP (Fig. S11g3). 

Taken together, it is understandable that the swallowtail originates from the topological associations 

amongst the degeneracy lines as aforementioned.  



10. Sequence of eigenstates after traversing ES 

For an isolated singularity, a common approach in characterizing its topology is simply observing the 

adiabatic transformation process along a closed loop enclosing it. However, if one considers a 

hypersurface singularity, the situation will be very different. Because a closed loop enclosing such 

singularities will inevitably traverse the exceptional surfaces. In characterizing the topology with 

eigenstates, it naturally gives rise to a problem as to how to define the order of eigenstates after 

traversing exceptional surfaces. In this section, we will discuss this question in detail based on the 

swallowtail. 

We firstly consider the loop lα, which encloses the double EL3s (Fig. S11a in the main text). In 

Section 9, we note that the loop can be decomposed into a product of l3 and l5 (Fig. S11a), and l5 is 

trivial. This means that the path residing in broken phase of lα can be totally deformed onto the 

exceptional surface, and thus lα and l3 are equivalent. Thus it can be understood that changing the order 

of 2  and 3  on the path residing in broken phase simply affects the intermediate evolution process 

but does not affect the topological characterization. In Fig. S12a1-a2, we plot the frame rotation and 

deformation process along lα, and the order of 2  and 3  is exchanged on the path that resides in 

broken phase. Compared with Fig. 4a3 in the main text, we find that the evolution of the real parts of 

eigenstates follows the same trajectories. The imaginary parts of eigenstates were added by a minus 

sign, but the evolution of the imaginary parts is simply an intermediate process (eigenstates are real at 

the beginning and ending points). The topology of the double EL3s is dominantly determined by the 

evolution of real parts. Hence, we confirm that exchanging the order of 2  and 3  on path residing in 

broken phase does not affect the topological characterization of the double EL3s. 

The loop lβ is partitioned into four segments by the ESs (see Fig. 4b1 in the main text), two of 

which reside in exact phases, and the other two reside in broken phase. To combine the four segments, 

we need a convention: on the two segments in broken phases, the order of 2  and 3  are unified, i.e. 

sorted by the corresponding eigenvalues (imaginary parts); on the two segments in exact phases, the 



eigenstates are sorted by the corresponding eigenvalues (from small to large). The convention ensures 

that the continuous deformation process of loop lβ (from Fig. 12b1-b3) is allowed. Following this 

convention, exchanging the order of 2  and 3  on the two segments simultaneously will not change 

the topological characterization by frame rotation and deformation process. As indicated by Fig. S12c1-

c2. 
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Figures and tables 

 

Fig. S1| Circuit diagram of a negative impedance converter structure through current inversion. 

 



 

Table S1| The capacitances of C1, C2 and C3 mounted on the circuit for tuning f1, f2 and f3, respectively. 

 



 

Fig. S2| Experimental data with vertical error bars that display the experimental deviations from the 

theoretical results, corresponding to the measured data in Fig. 3a2. At each experimental data point, the 

center of the error bar is the theoretical value (line), and the half length of the error bar is the absolute 

difference between the measured eigenvalue in Fig.3a2 and the theoretical value.  



 

Table S2| Binary groups of polyhedral. 



 

Fig. S3| Dynkin diagram. 



 

Fig. S4| Intriguing structures resulting from the combination of swallowtails. a, b and c are obtained by 

solving zeros of the discriminant of characteristic polynomial of the Hamiltonians of Eq. S13. 

 



 

Fig. S5| Imaginary parts of eigenvalue dispersions. (a-d) correspond to Fig. 3a-d in the main text, 

respectively. 



 

Fig. S6| Comparison between frame rotation and deformation. a, Frame rotation. b-d, Frame 

deformation. c-d, Two eigenvectors can be parallel or anti-parallel within the deformation process, 

signifying the emergence of ESs. 

 

 



 

Fig. S7| Different regions partitioned by ESs. Reg I and Reg II: PT-exact phases. Reg III: PT-broken 

phase. 

 



 

Fig. S8| Demonstration of the stability of NIL. a, Different areas in parameter space partitioned by the 

NIL (refer to Fig. S7). b-c, Two ways of opening the NIL to form bandgaps are prohibited. D. Band 

structure near the NIL. E. Upper panel: Schematic diagram of frame deformation of 2  (blue) and 3  

(black) along the dark blue path in (a). Lower panel: Joining the trajectories of the two eigenvalues 

along the dark blue path (in a) together and concatenating the two branches of eigenstates 2  

and 3  at ESs, the frame deformation process can be understood as a relative rotation angle 

[ 2 3( ) ( )    ], which is equivalent to a π Berry phase accumulated by the eigenstate along the red 

vertical loop in d (Eq. S41). 

 

 

 



 

Fig. S9| Braiding of eigenvalues along loops circulating isolated exceptional points. a, band structure 

and bulk Fermi-arc. b-c, braiding of eigenvalues along p1 and p2 in (a). 

 

 



 

Fig. S10| Loops carrying non-trivial topology in PT-exact phases. a, Locating the swallowtail into a 

sphere, with MP at the center. b, Viewed from the centre (MP), the singular lines and surfaces are 

projected onto the spherical surface (extracted from a). The ESs are projected onto the cyan lines, the 

double EL3s are projected onto points P and Q, and the NIL and NL are projected onto N and M, 

respectively. Loops l1 (on plane f3=0.01), l2 (on plane f1+f2=0.3) and l3 (on plane f3=0.3) characterize the 

topology of NL, NIL and double EL3s in exact phases. l2 and l3 are partially on ES, c1-e1, Band 

structures and evolution of eigenvalues on these loops, with points being experimental results. c2-e2, 

Frame rotation and deformation of eigenstates along these loops. The upper and lower panels are 

theoretical and experimental results, respectively. The gradually increasing ball size denotes the 

evolution process on the loops. Red, blue and black balls in (c-e) denote 1 , 2  and 3  (the 

corresponding eigenvalues: j1, j2 and j3), respectively. 

 

 



 

Fig. S11| Topological characterization of NIL and double EL3s in broken phases and relations between 

these loops. a, Loops circulating singularities. l4 and l6 are on plane f1+f2=0.3. l5 and l7 are on plane 

f3=0.3. b1-f1, Plot of band structures on different planes, and evolution of eigenvalues on loops. b2-f2, 

Frame rotation and deformation process along these loops, where Re and Im represent real and 

imaginary components of the eigenstates. Red, blue and black balls in (b-f) denote 1 , 2  and 3  (the 

corresponding eigenvalues: j1, j2 and j3), respectively. g1-g3, Deformation of loops conserving 

topological charges. g1, 1
4 6 4l l l  can be deformed to 1

7l
  by stretching l6 to 6l   and opening the 

basepoint. g2, The loop 1
3 5l l  that encloses the double EL3s can be deformed to 1 1

4 6 4 2l l l l    circulating 

the NIL and NL. g3, The loop 1 1
4 7 4 2l l l l   (circulating the NIL and the double EL3s) can be deformed to 

l1 (circulating the NL). 

 



 

Fig. S12| Frame rotation and deformation process by exchanging the order of 2  and 3  on the path 

in broken phases. a1-a2, Frame deformation process along lα, in which 2  and 3  exchanges on the 

path residing in broken phase. b1-b3, Continuous deformation process of loop lβ without changing the 

topology. c1-c2, Frame deformation and rotation process along lβ, in which 2  and 3  exchanges on 

the two segments residing in broken phases simultaneously. 
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