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1 Abstract
Deep Neural Networks (DNNs) are highly effective but remain vulnerable to adversarial examples, a 

class of inputs with imperceptible perturbations designed to force misclassification. This project 

reproduces the work of (Ma et al., 2018), which characterizes the regions where these attacks reside, 

known as “adversarial subspaces,” using Local Intrinsic Dimensionality (LID). The central hypothesis 

is that valid data points lie on a low-dimensional submanifold; to trick the model, adversarial 

perturbations must push the input off this manifold into a surrounding region of significantly higher 

intrinsic dimensionality. We implement the authors’ method of estimating LID based on the distance 

distribution of a sample to its neighbors within a minibatch (Ma et al., 2018). By extracting LID 

estimates from multiple DNN layers, we construct a feature set to train a classifier that distinguishes 

adversarial examples from normal and noisy data. Our experiments confirm the original findings: 

adversarial examples consistently exhibit higher LID scores than normal data, particularly in deeper 

network layers, validating LID as a more effective detection metric than traditional kernel density or 

uncertainty measures (Ma et al., 2018).

2 Introduction

2.1 Assumptions and Symbols

2.1.1 Theoretical Assumptions

The validity of using Local Intrinsic Dimensionality (LID) to characterize adversarial examples relies 

on several key theoretical assumptions regarding the geometry of data and the nature of adversarial 

perturbations:

• The Manifold Hypothesis: The study assumes that legitimate data can be modeled as a 

collection of submanifolds embedded in a high-dimensional space. Normal data points lie on or 

very close to these low-dimensional structures (Ma et al., 2018).

• Properties of Adversarial Subspaces: Based on prior literature, the authors assume adversarial 

regions possess four specific properties (Ma et al., 2018):

1. Low Probability: They are regions that do not occur naturally.

2. Contiguity: They span a contiguous multidimensional space rather than being scattered 

randomly in small pockets.

3. Off-Manifold Structure: They lie close to, but not exactly on, the data submanifold.

4. Distributional Shift: Their class distributions differ from that of the closest data submanifold.

• Statistical Convergence (Extreme Value Theory): For the estimation of LID, the authors rely 

on the assumption that the tails of continuous probability distributions converge to the 

Generalized Pareto Distribution (GPD). This allows the smallest neighbor distances to be treated 

as extreme events associated with the lower tail of the distance distribution (Ma et al., 2018).

2.1.2 Notations and Symbols

We adopt the mathematical notation used by (Ma et al., 2018) to define the LID estimator and the 

detection algorithm.



Symbol Description

𝑥 A reference data sample (e.g., an image)

𝑥′ An adversarial example generated from 𝑥

𝑋 A dataset consisting of normal (unperturbed) examples

𝒫︀ The underlying data distribution

𝑅 A random variable denoting the distance from 𝑥 to other data samples

𝑟 A specific distance value (𝑟 > 0)

𝐹(𝑟) The cumulative distribution function (CDF) of the distance variable 𝑅

LID𝐹 (𝑟) The Local Intrinsic Dimensionality of 𝑥 at distance 𝑟

L̂ID(𝑥) The Maximum Likelihood Estimator (MLE) of the LID at 𝑥

𝑘 The number of nearest neighbors used for LID estimation

𝑟𝑖(𝑥) The distance between 𝑥 and its 𝑖-th nearest neighbor within the sample

𝑟𝑘(𝑥) The maximum of the neighbor distances (distance to the 𝑘-th neighbor)

𝐻(𝑥) A pre-trained Deep Neural Network (DNN) with 𝐿 transformation layers

𝐵norm A minibatch of normal examples drawn from 𝑋

𝐵adv A minibatch of adversarial examples generated from 𝐵norm

𝐵noisy A minibatch of noisy examples generated by adding random noise to 𝐵norm

Table 1: Summary of Notations

2.2 Review of Adversarial Attack Strategies
Adversarial attacks generate carefully crafted perturbations to induce misclassification in Deep 

Neural Networks (DNNs). Following the methodology of (Ma et al., 2018), we reproduce the 

evaluation of specific attack strategies.

2.2.1 Fast Gradient Method (FGM)

Proposed by (Goodfellow et al., 2014), FGM is a one-step attack that perturbs the input 𝑥 directly 

along the direction of the gradient of the loss function 𝐽(𝜃, 𝑥, 𝑦) with respect to the input (Ma et al., 

2018). This maximizes the loss locally under an 𝐿∞ norm constraint.

𝑥adv = 𝑥 + 𝜀 ⋅ sign(∇𝑥𝐽(𝜃, 𝑥, 𝑦))



Figure 1: Above: Visualization of Nested Circles dataset and decision boundary of our test model

Below: Visualization and Summary of FGM perturbation to the dataset. Observe that original data 

distribution manifold is “broken”, perturbated data is more scattered.

2.2.2 Basic Iterative Method (BIM)

BIM is an iterative extension of FGM introduced by (Kurakin et al., 2016), which applies the gradient 

step multiple times with a smaller step size 𝛼, clipping the result after each step to ensure the 

perturbation remains within an 𝜀-neighborhood of the original input (Ma et al., 2018).

𝑥0 = 𝑥
𝑥𝑖+1 = Clip𝑥,𝜀(𝑥𝑖 + 𝛼 ⋅ sign(∇𝑥𝐽(𝜃, 𝑥𝑖, 𝑦)))

The authors distinguish between two variants of this attack (Kurakin et al., 2016):

• BIM-a: The iterative process stops immediately once the adversarial example successfully fools 

the model (misclassification is achieved).

• BIM-b: The algorithm continues to iterate for a fixed number of steps regardless of when 

misclassification occurs, often resulting in higher confidence mispredictions.



2.2.3 Jacobian-based Saliency Map Attack (JSMA)

Proposed by (Papernot et al., 2016), JSMA is a targeted 𝐿0 attack (Ma et al., 2018). Unlike gradient-

based methods that modify many pixels slightly, JSMA iteratively selects the two most effective 

pixels to perturb based on an “adversarial saliency map”. This map identifies pixels that significantly 

increase the probability of a target class while decreasing the probability of the correct class. The 

process repeats until misclassification is achieved or a perturbation limit is reached.

3 Local Intrinsic Dimensionality

3.1 Hausdorff Dimension and Manifolds
The foundation of this study is the Manifold Hypothesis, which posits that high-dimensional data 

(such as images) does not uniformly fill the ambient space ℝ𝐷, but rather concentrates on or near a 

lower-dimensional submanifold ℳ︀.

The intrinsic dimension of such a set is rigorously defined by the Hausdorff dimension. For a 

subset 𝑆 ⊆ ℝ𝐷, the Hausdorff dimension dim𝐻(𝑆) is defined using the 𝑑-dimensional Hausdorff 

measure 𝐻𝑑(𝑆):

dim𝐻(𝑆) = inf{𝑑 > 0 : 𝐻𝑑(𝑆) = 0}

While Hausdorff dimension provides a precise theoretical characterization of the “true” degrees of 

freedom of the data manifold, it is notoriously difficult to estimate from finite, discrete samples (Ma 

et al., 2018). Consequently, practical applications require robust estimators that capture local 

dimensional structure. This motivates the use of expansion-based measures like Local Intrinsic 

Dimensionality (LID).

3.2 Theoretical Definition of LID
LID generalizes the concept of “expansion dimension” to the statistical setting of continuous 

distance distributions (Ma et al., 2018). In Euclidean space, the volume of a 𝑚-dimensional ball scales 

as 𝑟𝑚. LID measures this rate of growth using the cumulative distribution function (CDF) of 

distances.

Given a reference sample 𝑥 ∈ 𝑋, let 𝑅 > 0 be a random variable denoting the distance from 𝑥 to 

other samples. If the CDF 𝐹(𝑟) is positive and continuously differentiable at 𝑟 > 0, the LID of 𝑥 at 

distance 𝑟 is:

LID𝐹 (𝑟) ≔ lim
𝜀→0

ln(𝐹((1 + 𝜀) ⋅ 𝑟)/𝐹(𝑟))
ln(1 + 𝜀)

= 𝑟 ⋅ 𝐹 ′(𝑟)
𝐹(𝑟)

The local intrinsic dimension at 𝑥 is the limit as the radius tends to zero (Ma et al., 2018):

LID𝐹 = lim
𝑟→0

LID𝐹 (𝑟)

This value acts as a proxy for the dimension of the submanifold in the vicinity of 𝑥.

3.3 Estimation of LID
Since the true distribution 𝒫︀ is unknown, LID must be estimated from finite samples. The authors 

rely on Extreme Value Theory, which states that the lower tail of the distance distribution (the 

smallest nearest-neighbor distances) converges to a Generalized Pareto Distribution (GPD) (Ma et 

al., 2018).

Based on this convergence, the Maximum Likelihood Estimator (MLE) is derived (Ma et al., 2018). 

Given a sample 𝑥 and its 𝑘 nearest neighbors, the estimator is:



L̂ID(𝑥) = −(1
𝑘

∑
𝑘

𝑖=1
log 𝑟𝑖(𝑥)

𝑟𝑘(𝑥)
)

−1

where: 𝑟𝑖(𝑥) is the distance between 𝑥 and its 𝑖-th nearest neighbor. 𝑟𝑘(𝑥) is the maximum neighbor 

distance (the distance to the 𝑘-th neighbor).

3.4 Characterizing Adversarial Subspaces
The detection strategy relies on the distinct dimensional properties of adversarial regions compared 

to normal data submanifolds (Ma et al., 2018).

• Normal Examples: A normal sample 𝑥 lies on a submanifold 𝑆 with relatively low intrinsic 

dimension (Ma et al., 2018).

• Adversarial Examples: Recent theoretical work by (Amsaleg et al., 2017) demonstrates that the 

magnitude of perturbation required to induce misclassification decreases as the intrinsic 

dimensionality of the data increases.

Consequently, adversarial perturbations exploit the full degrees of freedom afforded by the high-

dimensional representational space (Ma et al., 2018).

Consequently, the neighborhood of 𝑥′ spans a subspace of significantly higher complexity than 𝑆. 

Empirically, this results in LID estimates for adversarial examples that are significantly higher than 

those for normal examples (Ma et al., 2018):

L̂ID(𝑥adv) ≫ L̂ID(𝑥normal)

This dimensional gap is the primary feature used to train the detection classifier.

4 Results
In this section, we present the results of our reproduction study on the MNIST dataset and the 

geometric insights gained from our synthetic toy model.

4.1 Experiment I: MNIST Reproduction
Our primary objective was to verify the claim that adversarial examples exhibit significantly higher 

Local Intrinsic Dimensionality (LID) than normal or noisy examples (Ma et al., 2018). An example of 

perturbated data can be found in Section 8.1.

4.1.1 LID Score Distributions

We computed LID estimates for the normal test set, a generated noisy dataset, and adversarial 

examples created via the Optimization-based (Opt) attack. Figure 2 illustrates the distribution of LID 

scores extracted from the final softmax layer (Axis LID Feature 1 above).



Figure 2: Above: 3 selected LID feature of FGSM perturbation on MNIST dataset, adversarial samples 

(red dots) have higher LID

Below: probability scores evaluated on final softmax layer

Consistent with the findings of Ma et al., we observed a distinct separation in the distributions:

• Normal and Noisy Examples: Exhibited consistently low LID scores, indicating they lie close to 

the low-dimensional data submanifold.

• Adversarial Examples: Exhibited sharp peaks in LID estimation, confirming that these 

perturbations push data points into high-dimensional regions of the ambient space (Ma et al., 

2018).

4.1.2 Detection Performance

We trained a logistic regression classifier using LID features extracted from all transformation layers 

(Ma et al., 2018). The detection performance was evaluated using the Area Under the ROC Curve 

(AUC) metric. Figure 3 summarizes our results compared to the baseline methods (KD) on MNIST 

dataset.



Figure 3: ROC Comparison between LID and KD methods

Detector FGM BIM-a BIM-b JSMA Opt

KD (Baseline) 78.1% 98.1% 98.6% 68.8% 95.2%

LID (Ours) 96.9% 99.2% 99.8% 92.2% 99.2%

Table 2: Averaged AUC scores for adversarial detection on datasets MNIST, CIFAR-10 and CIFAR-100 

(Ma et al., 2018).

Our implementation reproduced the high efficacy of LID reported in the original paper (Ma et al., 

2018). Notably, LID maintained performance above 92% across all attack types, whereas the Kernel 

Density (KD) baseline fluctuated significantly, performing poorly on JSMA (68.8%) and FGM (78.1%) 

(Ma et al., 2018). This confirms that LID provides a more robust characterization of adversarial 

subspaces than simple density estimation.

4.2 Experiment II: Geometric Analysis on Toy Model
To investigate the geometric intuition behind LID, we applied the detection pipeline to a 2D “Nested 

Circles” dataset. In contrast to the high-dimensional setting of MNIST (𝑑 ≈ 784), the low-

dimensional embedding (𝑑 = 2) revealed significant limitations in the separability of adversarial 

subspaces.

4.2.1 Detection Performance vs. Dimensionality

Quantitative evaluation on the toy model indicates a marked reduction in detection efficacy. As 

shown in Figure 4, the AUC scores saturate at approximately 0.72 for iterative gradient attacks and 

drop to 0.63 for saliency-based attacks.



Figure 4: Left: ROC Curves for LID-based detection on the Toy Dataset. Performance is significantly 

lower than in high-dimensional settings, with AUC scores ranging from 0.631 (JSMA) to 0.722 (BIM-

a).

Right: 3 selected LID feature of FGSM perturbation on Toy dataset.

4.2.2 Comparative Analysis with Baselines

Despite the absolute decrease in performance, LID maintained a marginal advantage over traditional 

density-based metrics. The ROC curves for the FGSM attack show LID outperforms KD and KM 

baselines.

• LID: AUC = 0.707

• k-Mean (KM): AUC = 0.680

• Kernel Density (KD): AUC = 0.662

This ordering implies that even in low-dimensional spaces, the “expansion-based” assessment of LID 

captures local structural anomalies slightly better than pure probabilistic density estimation (KD) or 

Euclidean distance metrics (KM).

4.2.3 Error Analysis and Distributional Overlap

A detailed analysis of the classification metrics reveals the source of the performance degradation. 

While the precision of the detector remains acceptable, the recall is consistently low (< 50% for 

most attacks).

Figure 5: Performance metrics for the Toy Model. The low recall (green bars) indicates that the 

detector fails to identify a significant proportion of adversarial examples.

This high false-negative rate is explained by the distributional overlap observed in the detector 

outputs (Figure 6). Unlike the sharp separation seen in MNIST, the LID scores for adversarial 

examples in 2D often fall within the range of normal variation. This is particularly evident for JSMA, 



where the adversarial and normal distributions are nearly indistinguishable. A more comprehensive 

comparison can be found in Section 8.2.

Figure 6: Histograms of detector outputs. Significant overlap is observed between normal (green) 

and adversarial (red) distributions, particularly for JSMA.

5 Discussion
In this section, we interpret our findings in the context of the manifold hypothesis and discuss the 

broader implications of using Local Intrinsic Dimensionality (LID) for adversarial defense.

5.1 The Impact of Dimensionality on Detection
We hypothesize that the observed performance gap between the MNIST and Toy Model experiments 

is a direct consequence of the “curse of dimensionality.” The theoretical premise of LID is that 

adversarial perturbations exploit the vast, high-dimensional empty space surrounding the data 

manifold (Ma et al., 2018). In such spaces, moving “off-manifold” results in a dramatic increase in 

neighborhood complexity (Ma et al., 2018).

In ℝ2, the available space between the nested circles is topologically simple and bounded. 

Adversarial perturbations in this restricted domain do not generate the explosive growth in neighbor 

distances required to trigger a high LID estimate. Consequently, adversarial examples in low 

dimensions may manifest as simple noise rather than high-dimensional outliers, limiting the 

discriminative power of expansion-based metrics.



5.2 Universality of Adversarial Subspaces
A key finding from the original study, which our reproduction supports, is the structural similarity 

of adversarial regions across different attack strategies (Ma et al., 2018). Ma et al. demonstrated that 

an LID-based detector trained solely on simple Fast Gradient Method (FGM) examples could 

generalize to detect more complex Optimization-based (Opt) attacks (Ma et al., 2018).

This “cross-attack” generalization suggests that adversarial subspaces are not random artifacts 

unique to a specific algorithm. Instead, they appear to be consistent, contiguous regions of high 

intrinsic dimensionality that lie adjacent to the data manifold (Ma et al., 2018). This property is 

crucial for defense, as it implies that defenders do not need to train on every conceivable attack 

method to build a robust detector.

5.3 Robustness Against Adaptive Adversaries
A common failure mode for detection-based defenses is their susceptibility to “adaptive attacks,” 

where the adversary has white-box access to the detector and optimizes the attack to evade it.

The authors conducted an adaptive attack experiment by incorporating the LID score directly into 

the loss function (Ma et al., 2018). Remarkably, the LID detector maintained near-perfect detection 

rates (approaching 100%) even under this adaptive pressure (Ma et al., 2018). This stands in sharp 

contrast to Kernel Density (KD) methods, which were easily bypassed when the adversary targeted 

the density metric (Ma et al., 2018). This suggests that “intrinsic dimension” is a fundamental 

geometric property that is much harder for an adversary to manipulate than simple distance or 

density metrics.

5.4 Limitations and Future Directions
While effective, the practical application of LID relies on the quality of the statistical estimator (Ma 

et al., 2018).

• Sample Efficiency: The authors noted that detection performance improves as the size of the 

reference minibatch increases (e.g., from 100 to 1000 samples) (Ma et al., 2018). In real-time 

applications, the computational cost of nearest-neighbor search in large batches remains a 

bottleneck.

• Theoretical Modeling: The current approach treats LID features empirically. A significant open 

challenge, as noted by the authors, is to theoretically model how Deep Neural Network 

transformations (convolutions, pooling) explicitly alter the intrinsic dimensionality of data 

manifolds layer-by-layer (Ma et al., 2018).



6 Methods
To rigorously evaluate the efficacy of Local Intrinsic Dimensionality (LID) in characterizing 

adversarial subspaces, we conducted two sets of experiments. First we state the Mathematical 

Preliminaries.

6.1 Mathematical Preliminaries
To clarify the terminology used in our architectural descriptions, we formally define the key 

operations below.

6.1.1 Rectified Linear Unit (ReLU)

ReLU is the non-linear activation function used in our hidden layers. It introduces sparsity and non-

linearity by zeroing out negative values:

𝑓(𝑥) = max(0, 𝑥)

6.1.2 Discrete Convolution

For the MNIST ConvNet, the core operation is the discrete convolution. Given an input image 𝐼  and 

a learnable kernel (filter) 𝐾 , the output feature map 𝑆 is calculated as the sum of element-wise 

products as the kernel slides over the input:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝐾(𝑚, 𝑛)

where indices (𝑚, 𝑛) range over the kernel dimensions. This operation allows the network to detect 

local spatial patterns such as edges and textures.

6.1.3 Logits

“Logits” refer to the vector of raw, non-normalized predictions generated by the final classification 

layer of the neural network (𝑧), before they are transformed into probabilities. In our multi-class 

classification tasks, these values serve as the input to the Softmax function:

𝜎(𝑧)𝑖 = 𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒𝑧𝑗

Using LID on the logits (rather than the softmax probabilities) is often preferred for detection 

because the Softmax function compresses values into the [0, 1] range, potentially masking the 

extreme distance variations characteristic of adversarial examples (Ma et al., 2018).

To rigorously evaluate the efficacy of Local Intrinsic Dimensionality (LID) in characterizing 

adversarial subspaces, we conducted two sets of experiments. The first serves as a reproduction 

study using the MNIST dataset under the exact conditions specified by Ma et al (Ma et al., 2018). The 

second is an exploratory analysis using a low-dimensional “toy” dataset to provide visual 

confirmation of the manifold hypothesis.

6.2 Experiment I: Reproduction on MNIST
In this phase, we aimed to replicate the baseline performance reported in the original study (Ma et 

al., 2018).

6.2.1 Target Model and LID Extraction

We trained a 5-layer Convolutional Neural Network (ConvNet) featuring max-pooling and dropout 

layers (Ma et al., 2018).

• Architecture: The network consists of a standard sequence: Conv2D → MaxPool → Dropout → 

ReLU.



• LID Estimation Layers: Following the protocol of Ma et al., we treated the activation values of 

every transformation layer as a separate feature space. LID estimates were calculated at each of 

these stages, including the output of convolutional filters, max-pooling layers, ReLU activations, 

and the final softmax layer (Ma et al., 2018).

6.2.2 Adversarial Attack Generation

We generated adversarial examples using five state-of-the-art attack strategies:

1. Fast Gradient Method (FGM): 𝐿∞ perturbation.

2. Basic Iterative Method (BIM-a & BIM-b): Iterative 𝐿∞ attacks.

3. Jacobian-based Saliency Map Attack (JSMA): An 𝐿0 targeted attack.

4. Optimization-based Attack (Opt): The Carlini & Wagner 𝐿2 attack.

6.2.3 LID Estimation Details

A critical component of our methodology, derived from the original implementation, is the 

construction of the reference set for LID estimation.

As shown in Algorithm 1 (Ma et al., 2018), LID is always estimated relative to the normal data 

manifold. We process the data in minibatches as follows:

1. Reference Set (𝐵
norm

): A minibatch of normal, unperturbed training examples is fixed as the 

reference population (Ma et al., 2018).

2. Query Sets: We compute the LID for three distinct groups of query points relative to 𝐵norm:

• Normal: The points in 𝐵norm themselves (Ma et al., 2018).

• Noisy: 𝐵noisy (normal points with random noise added) (Ma et al., 2018).

• Adversarial: 𝐵adv (adversarial examples generated from 𝐵norm) (Ma et al., 2018).

For a query point 𝑞 and the reference batch 𝐵norm, we find the 𝑘 nearest neighbors of 𝑞 within 

𝐵norm and apply the MLE estimator (Ma et al., 2018). This ensures we are measuring how “far” or 

“complex” the query point appears from the perspective of the normal data manifold.

6.3 Experiment II: Geometric Analysis on Toy Model
To intuitively visualize the “off-manifold” property, we designed a simplified experiment on a 

synthetic dataset.

6.3.1 Dataset and Model

We utilized the “Nested Circles” dataset to train a lightweight Multi-Layer Perceptron (MLP).

• Input: 2D coordinates (𝑥, 𝑦).
• Architecture: Input Layer (2 units) → Hidden Layer 1 (ReLU) → Hidden Layer 2 (ReLU) → Logits 

(Softmax).

6.3.2 LID Estimation Setup

Unlike the complex MNIST network, we explicitly selected a specific set of feature spaces to track 

the dimensionality shift as data propagates through the network. LID estimation was performed on 

the following feature list:

• Input Space (ℝ2)

• Hidden Layer 1 Activations

• Hidden Layer 2 Activations

• Final Logits (Pre-Softmax)
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8 Appendix

8.1 Visualization Adversarial Perturbation on MNIST

Figure 7: Visualization Adversarial Perturbation on MNIST



8.2 Full Probability Distribution on Toy Dataset

8.2.1 Source Code

Source code available at https://github.com/synxn1o/torch_lid_adversarial_subspace_detection

https://github.com/synxn1o/torch_lid_adversarial_subspace_detection
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