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Abstract

This work follows and implements the framework for topological music analysis proposed
by Alcald-Alvarez and Padilla-Longoria [1], applying persistent homology to the study of har-
monic structures in Western tonal music. Our primary goal is not to introduce new topological
constructions, but to carefully reproduce and systematize the existing methodology, and to test
its descriptive power in a conservative setting. We extract sequences of vertical events from
musical fragments and encode them in several ways. For each encoding, we compute persistent
homology using Vietoris-Rips filtrations and compare the resulting persistence diagrams via
bottleneck distance.

In contrast to previous studies that focus on stylistically distinct repertoires, we restrict at-
tention to four Baroque concertos sharing closely related harmonic and stylistic features. This
controlled setting allows us to examine whether the established TMA pipeline can capture subtle
differences among highly similar works. The resulting comparisons are consistent with tradi-
tional tonal analysis, while also highlighting how different data encodings emphasize different
harmonic aspects.

1 Introduction

This work will present several ways to process the data extracted from digital music scores, and
apply some methods from topological data analysis to analyze the processed data. Subsequently,
these methods will be applied to compare some baroque concertos. The main motivation comes
from the work of Alcala-Padilla et al. [1], in which they applied persistent homology to analyze and
compare several music pieces from different styles. So in this work, we will follow their procedure
step by step, and try to use the same methods to make a more conservative test by selecting four
baroque concertos sharing similar stylistic features, and see whether our method can capture subtle
differences among them.

There have been several perspectives to analyze music all over the world, such as traditional
music tonal theory, Chinese pentatonic scale, Indian raga, and Western harmony theory, and so
on. Undeniably, these theories have provided us with a deep understanding of music from different
cultural backgrounds and have done a great job in analyzing and composing music in their respective
contexts. However, when it comes to describing musical objects and phenomena found in various

styles, musicians and musicologists, a single framework may not be sufficient and consistent. Thus



if there is a more general framework to analyze music, works will be more clear and easy when
dealing with music from different styles even though some details may be lost.

In recent years, topological data analysis (TDA) has emerged as a powerful tool for analyzing
complex data sets by capturing their underlying topological features [1]. Scores of music compo-
sitions can be mapped into high-dimensional spaces in many ways, where different ways focus on
different aspects of music. By applying TDA techniques, especially persistent homology, we can
get some information by comparing different music pieces, which may reveal new insights into the
structure and relationships between music, and will be fully established in the following sections.

First, we we apply persistent homology to different sets of points formed from pitch with or
without rhythm and onset time, which are called vertical events. Next, we propose two ways to
construct sequences of simplicial complex from chord sequences. One of this consrtuction has been
proposed as a way to regard a chord as a simplex on vertices corresponding to pitches or pitch
classes [2], assuming chords consisting of n pitch classes as simplices on n vertices. We plot as
barcodes and persistence diagrams the persistent homology of these constructions, and compare
different baroque concertos based on these topological features, using bottleneck distance. Finally,

we summarize the results and discuss possible future directions.

2 Definitions and Methods

We consider music scores written in stave notation, which can be digitally represented in formats
such as MusicXML or MIDI. We define vertical events as tuples containing information of pitches
(or pitch classes), possibly together with some other features like its onset, duration (rhythm),
dynamics (loudness) or timbre (instrument). In this work, we mainly focus on pitches, with or
without onset time and duration of vertical events.

A vertical event consisting of only pitches is called a chord, and a chord formed by n different
pitch classes is called an n-chord. A sequence of vertical events is called a music fragment. For
a music fragment M = {eq,...,e,}, the interval events [e;, e;] is the sequence of vertical events
from e; to e;.

This segmentation only depends on the sequential order, since it is indexed by their order
of appearance in the score. And hence it allows us to concentrate on harmonic changes, when
necessary, take into account time information. We always take indexes in to consideration, be-
cause oen chord may appear multiple times in a music fragment. So M is actually in the form
{(e0,0), (e1,1),...,(en,n)}. We will omit the indexes when there is no ambiguity. This notation
helps us to consider harmonic progressions independently of rythmic values involved. Simplices
corresponding to repeated chords will only appear once in the simplicial complex. Also, when
being mapped into R", repeated chords will be mapped to the same point.

Given a music fragment M = {eg, ..., e, }, we define A(M) = {agp, a1, ...,a,} as the ordered set
where a; corresponds to the i-th vertical event e; in M. Chords in the set A(M) can be represented

as points in R” in several ways, depending on the features we want to focus on: by their common



name like C major or A minor etc, by their pitch classes, or by their intervals defined in classical
post-tonal theory. Later, we will propose six ways to construct A(M) from a music fragment M,
and apply persistent homology.

Now we consider pitches defined in the twelve-tone equal temperament system. Their corre-
sponding pitch calsses can be represented as integers modulo 12, where C=0, Ci=1, D=2, D§=3,
E=4, F=5, Fi=6, G=7, Gf=8, A=9, Aj=10, B=11. This representation allows us to ignore octave
differences and focus on the relationships between pitch classes.

Since we only care about things about harmonic, before we start, we delete all staves containing
unpitched percussion instruments, and only keep staves containing pitched instruments. In order
to unify the time, we express all onset times and durations in terms of quarter note (crotchet). This
standardization will not restrict ourselves to the notes only with quarter note duration, instead,
the quarter note merely serves as time unit, we can still use miliseconds or ticks to express onset
times and durations. Additionally, the choice of time unit will not affect the data being mapped
into R™, up to a scaling factor. Nevertheless, homeomorphic data encodings lead to similar shape
features under TDA analysis, since homology is a topological invariant.

Here is an example under the above setting.

Example 2.1. Let us consider the first measure of the first movement of Bach’s Brandenburg

Concerto No. 5, BWV 1050, one of the most famous baroque concertos, as shown in Figure
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Figure 1: The first measure of Brandenburg Concerto No. 5 in D, BWV 1050: T Allegro.



Below we explicitly list the 16 vertical events appearing in this measure, as shown in Figure [I]

along with their onset times and durations (in quarter note units), with the form
({pitch classes}, duration, onset).
That is, from the score in Figure [l we have the following musical fragment

= {({2,6,9},0.25,0), ({2,6,9},0.25,0.25), ({2,6,9},0.25,0.5), ({2, 6,9}, 0.25,0.75),
{0},0.25,1), ({9},0.25,1.25), ({2, 6},0.25, 1.5), ({2, 6}, 0.25, 1.75),
{1,4,9},0.25,2), ({2,4,9},0.25,2.25), ({1, 2, 11},0.25,2.5), ({ 11},0.25,2.75),
1

(
(
(
({1,4,9},0.25,3), ({1,4,7},0.25,3.25), ({1,9,6},0.25,3.5), ({1,9,4},0.25,3.75) }.
There is no doubt that we can get different musical fragments from the same score, by modifying
vertical events to include or exclude onset times and durations. An notice that an event occurs
only when there is a change in notes sounding simultaneously. It is common that a pitch may last
longer than the duration of a vertical event, once it happens, same pitch will appear in the following
vertical events until it ends, to fulfill its actual duration. For example, as listed above, in the ninth
and tenth vertical events that start at time 2 and 2.25 respectively, pitch class 9 (A) and 4 (E) still
sound. Periodic decimal temporal values will be truncated if it appears.

Now from the above fragment M, we get

which is one kind of musical fragment we will consider later. In the following text, we will omit the

indexes of chords and events. Later we will encode these events in different ways, for example
(interval vector of chord, duration, onset)
which will be mapped into R™ in the form
(chords as vector in some Euclidean space, duration, onset)

or simply vectors representing chords only, without duration and onset time. In order to apply
persistent homology, all those representing chords must belong to the same R™. Now, here are six

ways to construct A(M) from a music fragment M.



2.1 General Strategy

The first time we get a music score, we extract all vertical events from it in normal form, just
as the example shows: all pitches together with their onset times and durations, both in quarter
note units. Similarly, we can also consider those tuples in which chords are encoded as interval
vectors, where interval vector is a classical way to represent pitch class sets in post-tonal theory, for
example, the interval vector of major triad {0,4, 7} is (0,0,1,1,1,0), since it contains one minor third
(3 semitones), one major third (4 semitones) and one perfect fifth (7 semitones). Despite the fact
that these representations indeed capture some harmonic features of chords, while they also lose
some information like voicing and inversion of chords. Thus, we may model chord connections rather
than chords themselves to take them into consideration, which will lead to other embbedings and
associated spaces. All such events will be analyzed both with or without onset times and durations.

The most important part of analysis involves TDA techniques, especially persistent homology.
After we map musical events into some Euclidean space R™, we can construct a filtration of simpli-
cial complexes from the point cloud formed by these points, using Vietoris-Rips complex or Cech
complex, and compute their persistent homology under Euclidean metric. While we will also com-
pute persistent homology of simplicial complexes directly associated with event intevals, without
considering a metric among data points.

All computations are done using Python programming language. We use Music21 library to
extract musical events from digital music scores in MIDI format. And we use MoguTDA library to
compute persistent homology and plot barcodes and persistence diagrams, and calculate bottleneck
distances between persistence diagrams. Some standard library like NumPy and Matplotlib are also
used for data processing and visualization.

I download digital music scores in MIDI format from [MuseScore, which is a popular platform
for sharing music scores. It can also identify music scores in PDF format and convert them into

MIDI format, if such scores are not available on the platform.

2.2 Persistent Homology on Various Musical Data Mapping

In this section, we will describe six ways to construct the ordered set A(M) from a music fragment
M, and apply persistent homology to each of them. We number the mapped data sets from I to
VI, and refer to those sets as data mappings.

In the first two mappings I and II we consider the points that stand for vertical events in the
music fragment M and incorporate onset times and durations: all events will be translated as a tuple
of pitch or interval classes, together with a rhythm value and an onset time value, both in quarter
note units, just as the example shows. The rest of the mappings III, IV, V and VI only consider
pitches or intervals, without onset times and durations. They only focus on harmonic aspects of
M. Once we finish generating those data sets, we apply persistent homology to each of them, using
Vietoris-Rips complex under Euclidean metric, and plot their barcodes and persistence diagrams.
Sequentially, we compare different baroque concertos based on these topological features, using

bottleneck distance, which is a standard way to measure the difference between two persistence
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diagrams. Therefore, we are able to present in dendrograms the distances among different music
pieces with the same data mapping. And hence we establish a notion of closseness among different
music pieces, from the perspective of topological data analysis.

For better presentation and visualization, we will mannually process the first movement of
BWYV 1050: I Allegro, which has been shown in the example above, and we will exhibit the results
of persistent homology computations of BWV 1048: T Allegro (the first four movements) as an
example in each data mapping. We use different colors in persistence diagrams to represent different
homology dimensions. As for plotting barcodes, we use teal for data mapping which include onset
times and durations, and use purple for data mapping without onset times and durations. Due to

computational time, we only compute persistent homology up to dimension 3.

2.2.1 Data Mapping I: Pitches with Onset Times and Durations

In this data mapping, each vertical event is mapped to a point in R whose first 12 coordinates
represent the pitch classes, the 13th coordinate represents the duration, and the 14th coordinate
represents the onset time. In these vectors, coordinates representing pitch classes of a chord are
represented by integers from 12 to 23, according to their ordering in the chords normal form. Such
choice allows us to embed any n-chord with n < 12 into R™. The rest two coordinates are simply
the duration and onset time, given as decimal numbers in quarter note units.

For example, three different vertical events in Figure [1| are mapped as follows:

({2,6,9},0.25,0) — (14,18,21,0,0,0,0,0,0,0,0,0,0.25, 0)
({1,4,9},0.25,2) — (13,16,21,0,0,0,0,0,0,0,0,0,0.25, 2)
({2,11},0.25,2.75) + (14,23,0,0,0,0,0,0,0,0,0,0,0.25, 2.75)

Applying this data mapping to the first four measures of BWV 1048: I Allegro, we get persistence
and barcodes diagrams as shown in Figure[2 and Figure[3|respectively. Descrbing events as vectors
recording pitches, durations and onset times, this mapping gives us a way to have a glimps into their
general distribution over time, and also identify the presence of distinguished harmonic regions. In

this way, we can have a general impression of harmonic-rhythmic structure of the fragment.

2.2.2 Data Mapping II: Interval Vectors with Onset Times and Durations

Similarly, we consider each event as a point in R® whose first 6 coordinates represent the interval
vector of the chord, the 7th coordinate represents the duration, and the 8th coordinate represents
the onset time. This mapping reflects similarity in the chord structures present in each event,

together with their distribution in time and rhythm. For example, three different vertical events in
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Figure 2: Persistence diagram of BWV 1048: I Allegro under Data Mapping 1.
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Figure 3: Barcode of BWV 1048: 1 Allegro under Data Mapping 1.



Figure [T] are mapped as follows:

({2,6,9},0.25,0) — (0,0,1,1,1,0,0.25,0)
({1,4,9},0.25,2) — (0,0,1,1,1,0,0.25,2)
({2,4,9},0.25,2.25) — (0,1,1,0, 1,0, 0.25, 2.25)

The resulting persistence and barcodes diagrams of the first four measures of BWV 1048: T Allegro
are shown in Figure ] and Figure [f] respectively. This data mapping together with mapping III

BWV1048IAllegroG.mid, cc.1-16 - (vectint{ac), dur, pos)
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Figure 4: Persistence diagram of BWV 1048: I Allegro under Data Mapping II.

below, focuses more on types of chords or different chord structures presented in the fragment, as
they deal with interval vectors rather than pitches themselves.

Parallel to the above, we also work on sets obtained only from pitch data. We still focus on
harmony by considering data points only containing pitches information, without onset times and

durations. We use four ways to analyze the same data, as described below.

2.2.3 Data Mapping III: Interval Vectors Only

Dropping the last two coordinates in Data Mapping II, we consider each event as a point in R®

whose coordinates represent the interval vector of the chord. Following the same example, we get
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the ordered set Ajnt pect.(M) as follows:

{(0,0,1,1,1,0),(0,0,1,1,1,0),(0,0,1,1,1,0),(0,0,1,1,1,0)

0,0,0,0,0,0), (0,0,0,0,0,0), (0,0,0,1,0,0), (0,0,0, 1,0,0)
) ( ) ( )
) ( ) (

9 9

0,0,1,1,1,0),(0,1,0,0,2,0),(1,1,1,0,0,0),(0,0,1,0,0,0

(
(
( ,
(0,0,1,1,1,0),(0,0,2,0,0,1),(0,0,1,1,1,0)(0,0,1,1,1,0)}

)
)
)
)

In Figure [6] and Figure [7] we show the persistence diagram and barcode of the first four measures

of BWV 1048: I Allegro under this data mapping respectively. This is a coarsest way to analyze

harmonic structures in a music fragment, since it is purely based on interval content modulo

inversions without considering any other information. This implies a simpler shape of the data

set, which may lead to less homological features being presented. Hence, it is expected that the

persistent homology will be less informative compared to other data mappings. But somehow they

summerize diagrams obtained from other data mappings, since images of events under any of them

can be projected onto the set of their interval vectors.

2.2.4 Data Mapping IV: Presence of Pitches

This mapping maps chords as vectors in {0,1}!2 C I'? C R'2, where I = [0,1] is given in the

following way:
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Figure 6: Persistence diagram of BWV 1048: I Allegro under Data Mapping III.
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Figure 7: Barcode of BWV 1048: I Allegro under Data Mapping III.

10



Given a chord a in normal form, we define aji2 = (rg,71,...,711) where

1, ifica
0, ifi¢a

ri =

For example, three different vertical events in Figure [1| are mapped as follows:

({2,6,9}) — (0,0,1,0,0,0,1,0,0,1,0,0)
({1,4,9}) — (0,1,0,0,1,0,0,0,0,1,0,0)
({2,4,9}) — (0,0,1,0,1,0,0,0,0,1,0,0)

This association gives teh sequence
A112(M) = {aiﬂ? ]ai S M}

The resulting persistence and barcodes diagrams of the first four measures of BWV 1048: T Allegro

are shown in Figure [§ and Figure [] respectively. In this setting, each dimention represents the
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Figure 8: Persistence diagram of BWV 1048: 1 Allegro under Data Mapping IV.

presence or absence of a particular pitch class in a chord. So the images of two events will be
close if they share many pitch classes, and far apart if they have few pitch classes in common.
Moreprecisely, a given chord a contains k different pitch classes, if and only if ||aj12|| = Vk. As a
corollary, for chords a and b, we have ||aji2 — bji2|| = vk, if and only if a and b differ by k pitch

classes. And hence we can measuer how close chords are among themselves in terms of common

11
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pitch class.
This mapping yields homological features in higher dimensions than mappings III, V and VI.
Also, these features persist only during specific intervals, determined by the squre root of integers.

So bar in barcodes appear to form blocks.

2.2.5 Data Mapping V: Pitches Only

Projecting the data from mapping I on its first 12 coordinates, we consider each event as a point
in R'2. In this case, n-chords are mapped to tuples with non-zero integer values between 12 and
23 in the first n coordinates, and 0 in the rest coordinates. As a consequence, a chord is a n-chord
if and only if its image belongs to the subspace spanned by the first n canonical basis vectors of
R'2. Thus, through this mapping, samples produce similar diagrams if and only if their events are
similar in pitch and number of harmonic voices.

In our example, the chord ({2,6,9}) is mapped as follows:

({2,6,9}) — (14,18,21,0,0,0,0,0,0,0,0,0).

This mapping and mapping I are the only two mappings that are sensitive to transposition of
the fragment by a given interval. The bottleneck distance between persistence diagrams for this
data mapping of a fragment and its transposition will not be always 0. Through this mapping, we
capture closseness of chords in terms of both pitch content.

The resulting persistence and barcodes diagrams of the first four measures of BWV 1048: 1

Allegro are shown in Figure [I0] and Figure [T1] respectively.

12



BWV1048IAllegroG.mid, cc.1-16 - Chords in 82, c.a.12 - 23

rd
T iy
17.5 ~
’I
,I
15.0 7
,I
- td
e
12.5 A S
,I
rd
= 10.0 e
s
7.5 L
L
[ ] ,’
504 = / -—
t ’
e e Ho
i . ’/
2.5 . H1
0,,’ e H:
0.0 4 // e Hi
rd
T T T T
0 5 10 15
Birth

Figure 10: Persistence diagram of BWV 1048: I Allegro under Data Mapping V.
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2.2.6 Data Mapping VI: Pitches and Next Pitches

Finally, we consider not only the pitches, but also the intervals between two consecutive chords.
We propose the association a — ap int = (10,71,-..,711,do,d1,...,d11) € R'?, where 0 < r; < 12
stands for the interval class between pitch class ¢ and the next pitch class in the normal form of

chord a, if 7 is in a, and r; = 0 otherwise. Explicitly, that is

k  k is the next interval in a

0, ifi¢a

Ty =

Under this setting, for example, three different vertical events in Figure [1| are mapped as follows:

({2,6,9}) — (0,0,4,0,0,0,3,0,0,0,0,0)
({1,4,9}) — (0,3,0,0,5,0,0,0,0,0,0,0)
({2,4,9}) — (0,0,2,0,5,0,0,0,0,0,0,0)

In this mapping, points are close to each other if and only if their corresponding events involve sim-
ilar intervals over the same pitches. Persistent homology analysis under this mapping usually shows
non-trivial homology cycles in higher dimensions than mappings III and V, sometimes agreeing with
mapping IV. In contrast with mapping III and IV, bars in barcodes corresponding to mappings V
and VI are more scattered. Thus instead of forming blocks, they appear more individually.

The resulting persistence and barcodes diagrams of the first four measures of BWV 1048: 1

Allegro are shown in Figure [12] and Figure [13| respectively.

BWV1048IAllegroG.mid, cc.1-16 - B(acs. (alt, int))
6

#

O T TP
/
’
’
5 »”
td
’
rd
td
td
4 L e
ra
’
’
’
/
=34 e s
= A~
8 ’
S
- ’
24 = S
’
’
’ -———
Ve H
14 - ,/ . 1]
/’ Hi
td
g s H:
’
0 e e H3
’
T T T T T T
0 1 2 3 4 5 6
Birth

Figure 12: Persistence diagram of BWV 1048: T Allegro under Data Mapping VI.
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In summary, mappings IV, V and VI are different encodings of the normal form of chords. They
are related to each other, since we may recover the pitch classes of a vertical event from any of
these mappings. However, they yield diagrams with different levels of details, and capture different

aspects of harmonic structures in a music fragment.

2.3 Two Harmonic Simplicial Complexes

In this section, we propose two ways to construct sequences of simplicial complexes from chord
sequences, and compute their persistent homology without considering any metric among data
points. The simplicial complexes here are formed by simplices or simplicial complexes representing
individual chords, which are combined into a larger simplicial complex according to their order
of appearance in the music fragment. We claim that for similar score samples, the associated
complexes introduced here have similar Betti numbers. This will become more clear from the

examples below.

2.3.1 Simplicial Complex of Cumulative Chords by Pitch

This representation captures the pitches of chords as vertices of simplices which are added together
as events occur through the score.

Given an (n+1)-chord a with normal form vector (%, 21, . .., 2,), we difine its associated n-
simplex as s(a) = {zg, 71, T2, ..., %y }. Given a music fragment M = {eg,€y1,...,e,}, we consider
its sequence of chords A(M) = {ag,a1,...,a,}, which yields the sequence s(ap), s(a1),...,s(an)

of associated simplices. We define the simplicial complex of cumulative chords by pitch in the

15
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interval of chords [a;, a;], denoted by K(7,j), as the simplicial complex formed by the union of all
associated simplices from s(a;) to s(a;), together with all their faces. However, this kind of setting
is not sensitive to the order of appearance of chords. To fix this, we may consider the following

sequence of simplicial complexes:
Sa(M) = {K(i, j) }o<i<j<n-

No matter the order of appearance of chords, we get the abstract simplex on the same set of
pitch classes. However, the structure of the simplicial complex by pitches and intervals associated
with a chord, which will be introduced later, will vary according to the order of pitches, and hence
yielding a different topological encoding of the music fragment. This could be helpful when trying to
preserve information of the actual intervals appearing in the score. In this case it may ve congruent
to drop the octave-equivalence hypothesis and work directly with pitches rather than pitch classes.
On the other hand, oriented simplices and simplicial complexes associated to vertical events could
be considered in this framework, being interpreted as encoding the position of chords.

From now on, we will work with the main homological descirptors of ecah K(i, ), that is, their
Betti numbers S (K(i,7)) for k =0,1,2,... and Euler characteristic x(kK(i,7)). Since the maximal
dimension of simplices in K(i,7) is at most 11, we only need to consider Betti numbers up to
dimension 11. We focus on the sequence of simplicial complexes K(0, j) for j = 0,1,...,n, which
captures the cumulative harmonic content of the music fragment M as it progresses through time.
In each step, we add a new simplex corresponding to the next chord in the sequence, along with
all its faces.

Here is an example of the first four measures of BWV 1048: I Allegro. In the example score
shown in Figure |1} let us show how we build /C(0,0), (0, 1), K(0, 2) from the following three chords:

({2,6,9}), ({1,4,9}), ({1, 2, 11}).

K(0,0) is just the simplex associated to the first chord, which is a 2-simplex with vertices 2,6, 9,
together with all its faces. Which is shown in the left of Figure

To visualize it in R?, we have no choice but left the hall empty. But we have to keep in mind
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Figure 15: Building simplicial complexes (0, 1)
\ )

~ ——

Figure 16: Building simplicial complexes (0, 2)

that the triangle itself is actually contained in this complex, just as highlighted in green in the
figure, no to mention higher dimensional faces.

Next, we build K£(0,1) by adding the simplex associated to the second chord, which is also
a 2-simplex with vertices 1,4, 9, together with all its faces. Since vertex 9 is already present in
K(0,0), we only need to add the edge {1,9}, the edge {4,9}, the edge {1,4} and the face {1,4,9}
to K(0,0), as shown in the left of Figure

Finally, we build £(0,2) by adding the simplex associated to the third chord, which is a 2-
simplex with vertices 1,2, 11, together with all its faces. Since vertices 1 and 2 are already present
in (0,1), we only need to add the edge {1, 11}, the edge {2,11} and the face {1,2,11} to K(0,1),
as shown in the left of Figure

Clearly, after adding the third chord, we can see a 1-dimensional hole in the middle.

We show the barcode plot of Betti numbers for simplicial complexes K(0, j) associated with the
first four measures of BWV 1048: I Allegro in Figure

As a special case of the above, given an integer r € {0,1,...,[n/2]}, and a sequence of chords
A(M) = {ap,ai,...,a,}, we may consider the sequence of simplicial complexes IC,-(i — r,i + 1),

correspinding to the interval of chords [a;—,,a;4r]. We call the complex K,(i) the simplicial
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BWV1048lAllegroG.mid, cc.1-16 - B(x(0,))

Figure 17: Barcode of Betti numbers of simplicial complexes by pitches of BWV 1048: 1 Allegro.

complex of events of radius r around chord a;, who gives local information about harmonic
sequences. Notice that the former one is not contained in the latter one, so they are not a filtration,
but only a cover of it. So we may not strictly apply persistent homology techniques to them.
Focusing on the subsequence of cunulative events of varying radii arounda fixed event a;, we get
the sequence {ICr(i)}kL:/g], which is a filtration. As an example, we show the Betti number of

complexes of cumulative events of radius 4, Iy (7) in Figure

BWV1048IAllegroG.mid, cc.1-16 - B(K4(i))

Bio
B
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Figure 18: Barcode of Betti numbers of simplicial complexes of events of radius 4 of BWV 1048: 1
Allegro.

In the following works, we will focus on the results of calculating these homological descriptors
for all possible radii. Note that simplicial complexes K(i,7) do not capture intervals in chords,
which is a crucial harmonic feature. To fix this, we introduce another way to build simplicial

complexes.
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Figure 19: Simplicial complex associated to chord by pitches and intervals.

2.3.2 Simplicial Complex of Cumulative Chords by Pitch and Interval

We associate to a given chord a with normal form vector (zo,1,...,%,), the simplicial com-
plex whose simplices are o; = {@;,#; + 1,%; + 2,...,x; + 1} together with all their faces, for i =
0,1,...,n—1, where addition is taken mod 12. Given a sequence of chords A(M) = {ag, a1,...,an},
we denote the simplicial complex associated in this form to chord a; by mathcal K (i,4), and proceed
to define I@(z, Jj) as teh previous section. Thus, from construction, we get a sequence of simplicial
complexes representing the harmonic subsequence of A, where we can run a homology analysis.
To visualize, take ({2,6,9}) as an example again. Its associated simplicial complex K(4,7) is

is shown in Figure

3 Results

To test our proposal as a way of describing and comparing musical data, we analyzed the persistence
diagrams corresponding to the six data mappings described above, associated with four musical
examples sharing some common stylistic features. Such fragments belong to the following baroque
concertos: BWYV 1048: 1T Allegro, BWV 1049: I Allegro, BWV 1050: I Allegro, Vivaldi Op.3
No.3: I Allegro, For this test, we only consider the first four measures of each fragment. We
compare the harmonic data contained in these examples by using bottleneck distance calculated
between their Hyp-diagrams for all six data mappings. We only care about Hyp-diagrams since no

higer dimension diagrams were jointly generated for any pair of examples. We do not present all
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persistence and barcode diagrams here, but present the dendrograms that show the comparisons
among Hy-diagrams of different examples under each data mapping.

In order to contrast our approach with the traditional tonal analysis, we briefly summarize the
tonal relationships among these four examples using Roman Numeral Analysis, as the Figure
shows. When interpreting these progressions against our measurements, we must keep in mind that
events may not always reflect this chords, since they may include harmonic ornaments as passing

notes, retardations, etc. which are left out of the traditional analysis.

m.1 m.2 m.3 m.4
BWV 1048 | | IV-ii-V$\frac{B}5}$ | I-vi-IV-ii
BWYV 1049 | \' | A
BWYV 1050 | \" \Y A
RV 310 | I-VAB-vi-V | IV-176-ii-I V$\frac{6}{5}$-I-VA7-I

Figure 20: Roman Numeral Analysis of four baroque concertos.

We first consider the distance between Hg-persistence diagrams obtained from data mapping I,

which incorporates pitches, onset times and durations. It is shown in Figure By observation,

(ac(12, ..., 23),dur, pos) bottleneck matching for Hy

3 2 0 1
RV310lAllegroG ~ BWV1050lAllegroD BWV1048IAllegroG BWV1049lAllegroG
cc.1-4 cc.1-4 cc.1-4 cc.1-4

Figure 21: Data Mapping I.

we find that the first four measures of BWV 1048 and BWYV 1050 are the closest in shape among
all four samples. This is conpactible with the traditional tonal analysis, since the first movenments
of both concertos are in the key of G major. Just as we discussed before, this data mapping is
sensitive to transposition, so the closeness between these two examples is meaningful. Even though
RV 310 is also in G major, it has the largest distance to other examples, which still coincides with
the traditional analysis, since its harmonic rhythm and texture are quite different from the other
three examples.

As for data mapping II and III, both of which uses interval vectors together, with and with-
out onset times and durations respectively, the dendrogram of bottleneck distances between Hy-

persistence diagrams is shown in Figure [22| and Figure [23| respectively. In both cases, we find that
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(vectint(ac), dur, pos) bottleneck matching for Hy

0.7

0.6 4

0.5+

0.4 4

0.3

0.24

0.14

0.0

0 1 2 3
BWV1048IAllegroG BWV1049IAllegroG BWV1050IAllegroD  RV310lAllegroG
cc.1l-4 cc.1l-4 cc.1-4 cc.1-4

Figure 22: Data Mapping II.

vectint(ac) bottleneck matching for Hy

0 3 1 2
BWV1048lAllegroG  RV310lAllegroG ~ BWV1049lAllegroG BWV1050IAllegroD
cc.l-4 cc.l-4 cc.l-4 cc.l-4

Figure 23: Data Mapping III.
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RV 310 and BWYV 1050 are the closest examples. After dropping onset times and durations, BWV
1049 become equal close to both examples. We may conclude that in the aspect of musical intervals,
time information will affect the closeness among examples, especially for BWV 1049, which has a
different position after removing time coordinates.

The result from data mapping IV, which only considers the presence of pitches in chords, is

shown in Figure Little information can be found in this case, since this mapping carries least

Acordes en /*? bottleneck matching for Ho

05

04

03

02

01

0.0

BWVlOSgIAIIegroD RV310I2HegroG BWVlOABD\A"qu'OG BWV10491IAHegroG
cc.1-4 cc.1-4 cc.1-4 cc.1-4
Figure 24: Data Mapping IV.

information about chords: only presence or absence of pitch classes. And hence once the fragments
have been already similar enough, it of course fails.

The fifth mapping is the projection of the first mapping on its first 12 coordinates, which
only considers pitches in chords. The dendrogram of bottleneck distances between Hy-persistence

diagrams under this mapping is shown in Figure Similar to data mapping I, we find that

Acordes en 22, c. a. 12 - 23 bottleneck matching for Hy

| -

3 2 0 1
RV310IAllegroG BWV1050IAllegroD BWV1048IAllegroG BWV1049IAllegroG
cc.1-4 cc.l-4 cc.1-4 cc.l-4

Figure 25: Data Mapping V.

BWYV 1048 and BWV 1049 are the closest examples, which is consistent with the traditional
tonal analysis. It is quite reasonable since these two ways care most about transposition, and by
comparison, time information seems to have less effect on the closeness among examples. And
removing time information even makes the result more significant.

Finally, we consider data mapping VI, which considers pitches and intervals between consecu-

tive chords. The dendrogram of bottleneck distances between Hy-persistence diagrams under this
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mapping is shown in Figure [26] In this case, we find that the diagram are almost the same as data

PBlacs. (alt, int)) bottleneck matching for Hy

3 2 0 1
RV310IAllegroG BWV1050IAllegroD BWV1048IAllegroG BWV1049IAllegroG

Figure 26: Data Mapping VI.

mapping V, but with low contrast. This can be explained as follows: in the fifth mapping, the
results are significant, but when take musical intervals into consideration, with which we will get

different results if separately considered, the overall effect is weakened.

4 Conclusion and Future Work

Overall, we followed the full procedure provided in [1] to analyze harmonic structures in four
baroque concertos by using persistent homology. In that article, the authors compared Brandenburg
Concerto No.1, 2, 3 with a mexican musician’s work, and found that this way of analysis can
capture stylistic differences among them. In our work, we choose to make a more consevative test
by selecting four baroque concertos sharing similar stylistic features, and try to see whether our
method can capture subtle differences among them. And finally we found that these methods not
only coincides with traditional tonal analysis, but also provide us more information about how
different aspects of harmonic structures affect the closeness among examples.

But these methods still lack quite a lot of musical features, such as melodic structures, voice
leading, timbre, performance nuances, etc. In the future, we desire to find some ways to real
performance audio data into this framework, and try to incorporate more musical features into the

analysis.

A Persistent Homology

A.1 Simplicial Complexes

Definition 1. A simplicial complex K is a collection of simplices such that if c € K and 7 C o,
then 7 € K. The dimension of a simplex o is defined as dim(o) = |o| — 1, where |o| is the number
of vertices in 0. The dimension of the simplicial compler K is the mazimum dimension of its

sitmplices.
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For example, a O-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and a

3-simplex is a tetrahedron.

Definition 2. A subcomplex L of a simplicial complex K is a subset of K that is itself a simplicial

complex.

Specifically, Vietoris-Rips complex is a kind of simplicial complex commonly used in persistent

homology.

Definition 3. Given a set of points X in a metric space and a distance parameter ¢ > 0, the
Vietoris-Rips complex VR(X,¢€) is the simplicial complex where a simplex o = [vg,v1,- - , U] 1S
included if and only if the pairwise distances between all points in o are less than or equal to €, in

other words, d(z;, x;) < € for all z;,z; € 0.

By observation, for Vr; < ry, we have VR(X,r1) C VR(X,ry). This property allows us to

construct a filtration of Vietoris-Rips complexes by varying the distance parameter e.

Definition 4. A map f: K — L between two simplicial complexes K and L is called a simplicial
map if for every simplex o = [vg,v1,--- ,v] in K, the image f(o) = [f(vo), f(v1), -, f(vn)] is a
stmplex in L.

A.2 Homology

Homology is a mathematical concept used to study the topological features of a space, such as
connected components, holes, and voids. It provides a way to quantify and classify these features

using algebraic structures called homology groups.

Definition 5. Let K be a simplicial complex, R be a ring, and n be a non-negative integer. Then
we define Cp,(K; R) as the module over R generated by the set of n-simplices in K. The elements
of Cn(K; R) are called n-chains.

Explicitly, a n-chain is a formal sum of n-simplices with coefficients in the ring R, which is a
finit sum of the form ¢ =, rjo4, where r; € R and o0; are n-simplices in K.

To define homology groups, we need to introduce the boundary operator.

Definition 6. The boundary operator 0, : C,(K;R) = Cp—1(K; R) is a linear map defined on
the basis elements (n-simplices) of Cy(K; R) as follows:

an(['l)(),’l)l, T 7'Un]) = Z(_l)ih)Oavla T 715i7 e 7vn]7
=0

where U; indicates that the vertex v; is omitted from the simplez.

The boundary operator captures the idea of the "boundary” of a simplex. For example, the

boundary of a 1-simplex (edge) is its two endpoints, and the boundary of a 2-simplex (triangle) is
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its three edges. An important property of the boundary operator is that applying it twice yields
zero, i.e., Op—1 0 0, = 0. This property allows us to define two important submodules of C,,(K; R):

the cycle group and the boundary group.

Definition 7. The cycle group Z,,(K; R) is defined as the kernel of the boundary operator 0y, i.e.,
Zn(K; R) =ker(0,) = {c € C,(K;R) | On(c) = 0}.

The elements of Z,(K; R) are called n-cycles.

Definition 8. The boundary group B, (K;R) is defined as the image of the boundary operator
8n+1, z'.e.,
By (K; R) = im(9p41) = {0n+1(c) | ¢ € Cpy1 (K5 R) }

The elements of B, (K; R) are called n-boundaries.

Since Op,—1 © 0, = 0, we have B,(K;R) C Z,(K;R). This inclusion allows us to define the
homology groups.

Definition 9. The n-th homology group H, (K; R) is defined as the quotient module
Hn(K; R) = Zn(K; R)/Bn(K; R).

The elements of H,(K; R) are equivalence classes of n-cycles modulo n-boundaries. The rank
of the homology group H, (K; R), denoted as f3,,, is called the n-th Betti number, which counts the
number of n-dimensional holes in the simplicial complex K.

In practice, we often compute homology groups with coefficients in the field of two elements

Z./27 = {0, 1}, to simplify calculations and ignore orientation issues.

Theorem 1. Given a simplicial map f : K — L between two simplicial complexes K and L, the

map f induces a homomorphism on the homology groups:
f«: Hy(K; R) — Hy(L; R),
for each non-negative integer n.

A.3 Persistent Homology

Persistent homology is an extension of homology that studies the changes in topological features
across multiple scales. It is particularly useful in data analysis, where one often deals with point
clouds or other data sets that can be represented as filtrations of simplicial complexes. Given a

filtration of simplicial complexes

Ko C K1 CKyC---C Ky,
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we can compute the homology groups H,,(K;; R) for each complex K in the filtration. The inclusion

maps K; — Kj for i < j induce homomorphisms on the homology groups:
¢i,j : Hn(K“R) — HH(KJ,R)

The persistent homology groups are defined as the images of these homomorphisms.

Definition 10. The n-th persistent homology group HY s defined as
HY =im(¢;;) € Hy(Kj; R).

The rank of the persistent homology group Hfl] , denoted as Bf{j , is called the n-th persistent
Betti number, which counts the number of n-dimensional holes that persist from the complex K;
to the complex Kj.

In practice, we will consider filtations of Vietoris-Rips complexes
VR(X,e) CVR(X,e1) CVR(X,€e2) C--- CVR(X,€),

where 0 = €9 < €1 < €3 < -+ < €, = maz{d(z;, z;) : x;,x; € X}.
Definition 11. Given a homology class o« € Hy,(K;; R), its birth and death are defined as follows:

e The birth of « is the smallest index b such that o is in the image of the map H, (Kp; R) —
Hn(Ki; R)

e The death of a is the smallest index d > b such that the image of o under the map
H,(K;; R) — H,(Kg; R) is zero.

The persistence of a is defined as d —b. The multiset of all birth-death pairs (b, d) for homology
classes in the filtration is called the persistence diagram.

Persistent homology provides a powerful tool for analyzing the topological features of data
across multiple scales, allowing us to identify significant structures that persist over a range of

parameters.
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