MA341, Applied and Computational Topology

Assignment 1

Due in-class on Friday, October 24

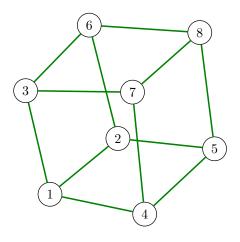
Numbered exercises are from Edelsbrunner and Harer's "Computational topology: An introduction."

- 1. Recall that the cube graph Q_3 is the graph formed by the 8 vertices and 12 edges of a 3-dimensional cube. We saw in class that it is a planar graph, i.e., embeddable to \mathbb{R}^2 . More generally, embedding of a graph to a surface can be defined in a similar way. The embedding is said to be regular, if it possesses the greatest possible symmetry, like a regular polyhedron bound to the surface. For example, the planar embedding of Q_3 does not give rise to a regular one to S^2 via one-point compactification, but the latter does receive a regular embedding of Q_3 (one of the five Platonic solids). Describe a regular embedding of Q_3 to the torus $S^1 \times S^1$. Hint: It may be convenient to illustrate the surface by a suitable parallelogram.
- 2. A cubic graph is a graph in which all vertices have degree 3, such as Q_3 above. Using the free open-source mathematics software system Sage-Math, list all planar cubic graphs with 8 vertices, up to isomorphism. What about allowing multigraphs? Hint: The SageMath website offers an extensive toolbox with numerous functions and examples for graph theory, among other subjects. The one you will need to enumerate planar graphs requires the additional package plantri, which is not available in the cloud version, but comes together with the local version downloadable to your computer.

You are encouraged to explore what *SageMath* can do computationally with graphs (and knots and links). It can even render LaTeX code for the

¹More precisely, an embedding M of a graph G is said to be regular if and only if for every two flags, i.e., triples (v_1, e_1, f_1) and (v_2, e_2, f_2) , where e_i is an edge incident with the vertex v_i and the face f_i , there exists an automorphism of M which sends v_1 to v_2 , e_1 to e_2 , and f_1 to f_2 .

outputs, such as this one:



- 3. Edelsbrunner–Harer, Exercise 1 on page 24.
- 4. Edelsbrunner–Harer, Exercise 5 on page 24.
- 5. Edelsbrunner–Harer, Exercise 7 on page 49.