MA323 Topology Midterm Exam

2:00-3:50 pm

April 18, 2025

Your name: _____

SID: _____

1. (15 points)

(a) (5 points) State the definition of a T_3 space.

(b) (10 points) Show that a compact Hausdorff space is T_3 .

- 2. (20 points)
 - (a) (5 points) State the definition of a C_2 space.

(b) (5 points) Show that a C_2 space is separable.

(c) (10 points) Give an example of a separable space that is not C_2 , with justification.

- 3. (15 points) Give examples with justification.
 - (a) (5 points) A closed and bounded metric space that is not compact.

(b) (5 points) A pair of homeomorphic metric spaces, one complete, the other not (recall that by definition a metric space is *complete* if every Cauchy sequence in it converges).

(c) (5 points) A continuous bijection whose inverse is not continuous.

- 4. (20 points) Let $f: X \to Y$.
 - (a) (5 points) Show that if f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x).

(b) (5 points) State the definition of a C_1 space.

(c) (10 points) Show that the converse of (a) holds if X is C_1 .

5. (20 points) Recall that a topology \mathscr{T} can be specified by a *subbasis* \mathscr{S} , so that its basis \mathscr{B} consists of all finite intersections of elements of \mathscr{S} , and \mathscr{T} consists of all arbitrary unions of elements of \mathscr{B} .

Let X and Y be topological spaces. Denote by $\mathscr{C}(X, Y)$ the set of continuous maps from X to Y. Given any $C \subset X$ compact and $U \subset Y$ open, write

$$S(C,U) = \{ f \in \mathscr{C}(X,Y) \mid f(C) \subset U \}$$

Define the *compact-open topology* on $\mathscr{C}(X, Y)$ to be generated by the subbasis \mathscr{S} consisting of sets of the form S(C, U).

- (a) (5 points) Check that \mathscr{S} is indeed a subbasis.
- (b) (15 points) Given a third space Z, define a map $\phi : \mathscr{C}(X \times Y, Z) \to \mathscr{C}(X, \mathscr{C}(Y, Z))$ by sending $f : X \times Y \to Z$ to $F : X \to \mathscr{C}(Y, Z)$ such that each $x \in X$ maps to

$$F(x): Y \to Z$$
$$y \mapsto f(x, y)$$

Check that ϕ is well-defined, i.e., each F(x) is continuous and F is also continuous. (Hint: write F(x) as a composite of continuous maps. To show the continuity of F, for each fixed $x_0 \in X$, you need only consider neighborhoods of $F(x_0)$ that are in the subbasis \mathscr{S} . Use compactness in the definition of \mathscr{S} .)

6. (10 points) If X and Y are topological spaces, a map $f: X \to Y$ (continuous or not) is said to be *proper* if the preimage of each compact subset of Y is compact. Show that if f is an embedding with closed image, then f is proper.