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On March 14, 2016, the world of mathematics
received an extraordinary Pi Day surprise
when Maryna Viazovska posted to the arXiv
a solution of the sphere packing problem
in eight dimensions [15]. Her proof shows

that the 𝐸8 root lattice is the densest sphere packing in
eight dimensions, via a beautiful and conceptually simple
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Henry Cohn, Abhinav Kumar, Stephen D. Miller, and Danylo Radchenko collaborated with Maryna Viazovska to
extend her methods to twenty-four dimensions.

argument. Sphere packing is notorious for complicated
proofs of intuitively obvious facts, as well as hopelessly
difficult unsolved problems, so it’s wonderful to see a
relatively simple proof of a deep theorem in sphere
packing. No proof of optimality had been known for any
dimension above three, and Viazovska’s paper does not
even address four through seven dimensions. Instead,
it relies on remarkable properties of the 𝐸8 lattice. Her
proof is thus a notable contribution to the story of 𝐸8,
and more generally the story of exceptional structures in
mathematics.

One measure of the complexity of a proof is how
long it takes the community to digest it. By this standard,
Viazovska’s proof is remarkably simple. It wasunderstood
by a number of people within a few days of her arXiv
posting, and within a week it led to further progress:
Abhinav Kumar, Stephen D. Miller, Danylo Radchenko,
and I worked with Viazovska to adapt her methods to
prove that the Leech lattice is an optimal sphere packing
in twenty-four dimensions [4]. This is the only other
case above three dimensions in which the sphere packing
problem has been solved.

The new ingredient in Viazovska’s proof is a certain
special function, which enforces the optimality of 𝐸8 via
the Poisson summation formula. The existence of such a
function had been conjectured by Cohn and Elkies in 2003,
but what sort of function it might be remainedmysterious
despite considerable effort. Viazovska constructs this
function explicitly in terms of modular forms by using
an unexpected integral transform, which establishes a
new connection between modular forms and discrete
geometry.

A landmark achievement like Viazovska’s deserves to
be appreciated by a broad audience of mathematicians,
and indeed it can be. In this article we’ll take a look at how
her proof works, as well as the background and context.
We won’t cover all the details completely, but we’ll see
the main ideas and how they fit together. Readers who
wish to read a complete proof will then be well prepared
to study Viazovska’s paper [15] and the follow-up work
on the Leech lattice [4]. See also de Laat and Vallentin’s

survey article and interview [13] for a somewhat different
perspective, as well as [1] and [7] for further background
and references.

Sphere Packing
The sphere packing problem asks for the densest packing
of ℝ𝑛 with congruent balls. In other words, what is the
largest fraction of ℝ𝑛 that can be covered by congruent
balls with disjoint interiors?

Pathological packings may not have well-defined den-
sities, but we can handle the technicalities as follows. A
sphere packing𝒫 is a nonempty subset ofℝ𝑛 consisting of
congruent balls with disjoint interiors. The upper density
of 𝒫 is

limsup
𝑟→∞

vol(𝐵𝑛
𝑟 (0) ∩𝒫)

vol(𝐵𝑛
𝑟 (0))

,

where 𝐵𝑛
𝑟 (𝑥) denotes the closed ball of radius 𝑟 about 𝑥,

and the sphere packing density Δℝ𝑛 in ℝ𝑛 is the supre-
mum of all the upper densities of sphere packings. In
other words, we avoid technicalities by using a generous
definition of the packing density. This generosity does
not cause any harm, as shown by the theorem of Groemer
that there exists a sphere packing 𝒫 for which

lim
𝑟→∞

vol(𝐵𝑛
𝑟 (𝑥) ∩𝒫)

vol(𝐵𝑛
𝑟 (𝑥))

= Δℝ𝑛

uniformly for all 𝑥 ∈ ℝ𝑛. Thus, the supremum of the
upper densities is in fact achieved as the density of some
packing, in the nicest possible way. Of course the densest
packing is not unique, since there are any number of ways
to perturb a packing without changing its overall density.

Why should we care about the sphere packing prob-
lem? Two obvious reasons are that it’s a natural geometric
problem in its own right and a toy model for granular
materials. A more surprising application is that sphere
packings are error-correcting codes for a continuous com-
munication channel. Real-world communication channels
can be modeled using high-dimensional vector spaces,
and thus high-dimensional sphere packings have practical
importance.
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Figure 1. Fragments of optimal sphere packings in two and three dimensions, with density 𝜋/√12 = 0.9068…
in ℝ2 and 𝜋/√18 = 0.7404… in ℝ3.

A
question
is good if
it has
good

answers.

Instead of justifying sphere packing
by aspects of the problem or its applica-
tions, we’ll justify it by its solutions: a
question is good if it has good answers.
Sphere packing turns out to be a far
richer and more beautiful topic than
the bare problem statement suggests.
From this perspective, the point of the
subject is the remarkable structures
that arise as dense sphere packings.

To begin, let’s examine the familiar
cases of one, two, and three dimensions.
The one-dimensional sphere packing
problem is the interval packingproblem

on the line, which is of course trivial: the optimal density
is 1. The two- and three-dimensional problems are far
from trivial, but the optimal packings, shown in Figure 1,
are exactly what one would expect. In particular, the
sphere packing density is 𝜋/√12 = 0.9068… in ℝ2 and
𝜋/√18 = 0.7404… in ℝ3. The two-dimensional problem
was solved by Thue. Giving a rigorous proof requires a
genuine idea, but there exist short, elementary proofs
[8]. The three-dimensional problem was solved by Hales
[9] via a lengthy and complex computer-assisted proof,
which was extraordinarily difficult to check but has since
been completely verified using formal logic [10].

In both two and three dimensions, one can obtain
an optimal packing by stacking layers that are packed
optimally in the previous dimension, with the layers
nestled together as closely as possible. Guessing this
answer is not difficult, nor is computing the density of
such a packing. Instead, the difficulty lies in proving that
no other construction could achieve a greater density.

Unfortunately, our low-dimensional experience is poor
preparation for understanding high-dimensional sphere
packing. Based on the first three dimensions, it appears
that guessing the optimal packing is easy, but this
expectation turns out to be completely false in high
dimensions. In particular, stacking optimal layers from
the previous dimension does not always yield an optimal
packing. (One can recursively determine the best packings
in successive dimensions under such a hypothesis [6], and

this procedure yields a suboptimal packing by the time it
reaches ℝ10.)

The sphere packing problem seems to have no simple,
systematic solution that works across all dimensions.
Instead, each dimension has its own idiosyncracies and
charm. Understanding the densest sphere packing in ℝ8

tells us only a little about ℝ7 or ℝ9, and hardly anything
about ℝ10.

Aside from ℝ8 and ℝ24, our ignorance grows as the
dimension increases. In high dimensions, we have abso-
lutely no idea how the densest sphere packings behave.
We do not know even themost basic facts, such aswhether
the densest packings should be crystalline or disordered.
Here “do not know” does notmerely mean “cannot prove,”
but rather the much stronger “cannot predict.”

A simple greedy argument shows that the optimal
density in ℝ𝑛 is at least 2−𝑛. To see why, consider any
sphere packing in which there is no room to add even
one more sphere. If we double the radius of each sphere,
then the enlarged spheres must cover space completely,
because any uncovered point could serve as the center
of a new sphere that would fit in the original packing.
Doubling the radius multiplies volume by 2𝑛, and so the
original packing must cover at least a 2−𝑛 fraction of ℝ𝑛.

Thatmay sound appallingly low, but it is very nearly the
best lower bound known. Even the most recent bounds,
obtained by Venkatesh [14] in 2013, have been unable to
improve on 2−𝑛 bymore than a linear factor in general and
an 𝑛 log log𝑛 factor in special cases. As for upper bounds,
in 1978 Kabatyanskii and Levenshtein [11] proved an
upper bound of 2(−0.599…+𝑜(1))𝑛, which remains essentially
the best upper bound known in high dimensions. Thus,
we know that the sphere packing density decreases
exponentially as a function of dimension, but the best
upper and lower bounds known are exponentially far
apart.

Table 1 lists the best packing densities currently known
in up to 36 dimensions, and Figure 2 shows a logarithmic
plot. The plot has several noteworthy features:
(1) The curve is jagged and irregular, with no obvious

way to interpolate data points from their neighbors.
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Figure 2. The sphere packing density is jagged and
irregular, with no obvious way to interpolate data
points from their neighbors.

Table 1. The record sphere packing densities in ℝ𝑛

with 1 ≤ 𝑛 ≤ 36, from Table I.1 of [7, pp. xix–xx]. All
numbers are rounded down.

𝑛 density 𝑛 density 𝑛 density

1 1.000000000 13 0.0320142921 25 0.00067721200977
2 0.906899682 14 0.0216240960 26 0.00026922005043
3 0.740480489 15 0.0168575706 27 0.00015759439072
4 0.616850275 16 0.0147081643 28 0.00010463810492
5 0.465257613 17 0.0088113191 29 0.00003414464690
6 0.372947545 18 0.0061678981 30 0.00002191535344
7 0.295297873 19 0.0041208062 31 0.00001183776518
8 0.253669507 20 0.0033945814 32 0.00001104074930
9 0.145774875 21 0.0024658847 33 0.00000414068828
10 0.099615782 22 0.0024510340 34 0.00000176697388
11 0.066238027 23 0.0019053281 35 0.00000094619041
12 0.049454176 24 0.0019295743 36 0.00000061614660

(2) The density is clearly decreasing exponentially, but
the irregularity makes it unclear how to extrapolate
to estimate the decay rate as the dimension tends
to infinity.

(3) There seem to be parity effects. Even dimensions
look slightly better than odd dimensions, multiples
of four are better yet, and multiples of eight are the
best of all.

(4) Certain dimensions,most notably 24, have packings
so good that they seem to pull the entire curve in
their direction. The fact that this occurs is not so
surprising, since one expects cross sections and
stackings of great packings to be at least good, but
the effect is surprisingly large.

Lattices and Periodic Packings
How can we describe sphere packings? Random or patho-
logical packings can be infinitely complicated, but the
most important packings can generally be given a finite
description via periodicity.

Figure 3. The spheres in a lattice packing form a
single orbit under translation (above), while those in
a periodic packing can form several orbits (below).
The small parallelograms are fundamental cells.

Recall that a lattice in ℝ𝑛 is a discrete subgroup of
rank 𝑛. In other words, it consists of the integral span of
a basis of ℝ𝑛. Equivalently, a lattice is the image of ℤ𝑛

under an invertible linear operator.
A sphere packing 𝒫 is periodic if there exists a lattice

Λ such that 𝒫 is invariant under translation by every
element of Λ. In that case, the translational symmetry
group of 𝒫 must be a lattice, since it is clearly a discrete
group, and 𝒫 consists of finitely many orbits of this
group. A lattice packing is a periodic packing in which
the spheres form a single orbit under the translational
symmetry group (i.e., their centers form a lattice, up to
translation). See Figure 3 for an illustration.

It is not known whether periodic packings attain the
optimal sphere packing density in each dimension, aside
from the five cases in which the sphere packing problem
has been solved. They certainly come arbitrarily close
to the optimal density: given an optimal packing, one
can approximate it by taking the spheres contained in
a large box and repeating them periodically throughout
space, and the density loss is negligible if the box is
large enough. However, there seems to be no reason why
periodic packings should reach the exact optimum, and
perhaps they don’t in high dimensions.

By contrast, lattices probably donot even come arbitrar-
ily close to theoptimal packingdensity in highdimensions.
For example, the best periodic packing known in ℝ10 is
more than 8% denser than the best lattice packing known.
Seen in this light, the optimality of lattices in ℝ8 and
ℝ24 is not a foregone conclusion, but rather an indication
that sphere packing in these dimensions is particularly
simple.
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To compute the density of a lattice packing, it’s con-
venient to view the lattice as a tiling of space with
parallelotopes (the 𝑛-dimensional analogue of parallel-
ograms). Given a basis 𝑣1,… ,𝑣𝑛 for a lattice Λ, the
parallelotope

{𝑥1𝑣1 +⋯+ 𝑥𝑛𝑣𝑛 ∶ 0 ≤ 𝑥𝑖 < 1 for 𝑖 = 1, 2,… ,𝑛}
is called the fundamental cell of Λ with respect to this
basis. Translating the fundamental cell by elements of Λ
tiles ℝ𝑛, as in Figure 3. From this perspective, a lattice
sphere packing amounts to placing spheres at the vertices
of such a tiling. On a global scale, there is one sphere for
each copy of the fundamental cell. Thus, if the packing
uses spheres of radius 𝑟 and has fundamental cell 𝐶, then
its density is the ratio

vol(𝐵𝑛
𝑟 )

vol(𝐶) .

Both factors in this ratio are easily computed if we are
given 𝑟 and𝐶. The volume of a fundamental cell is just the
absolute value of the determinant of the corresponding
lattice basis; we will write it as vol(ℝ𝑛/Λ), the volume
of the quotient torus, to avoid having to specify a basis.
Computing the volume of a ball of radius 𝑟 in ℝ𝑛 is a
multivariate calculus exercise, whose answer is

vol(𝐵𝑛
𝑟 ) = 𝜋𝑛/2

(𝑛/2)!𝑟
𝑛,

where of course (𝑛/2)! means Γ(𝑛/2 + 1) when 𝑛 is
odd. We can therefore compute the density of any lattice
packing explicitly. The density of a periodic packing is
equally easy to compute: if the packing consists of 𝑁
translates of a lattice Λ in ℝ𝑛 and uses spheres of radius
𝑟, then its density is

𝑁 vol(𝐵𝑛
𝑟 )

vol(ℝ𝑛/Λ) .

Of course the density of a packing depends on the radius
of the spheres. Given a lattice with no radius specified, it
is standard to use the largest radius that does not lead
to overlap. The minimal vector length of a lattice Λ is the
length of the shortest nonzero vector inΛ, or equivalently
the shortest distance between two distinct points in Λ.
If the minimal vector length is 𝑟, then 𝑟/2 is the largest
radius that yields a packing, since that is the radius at
which neighboring spheres become tangent.

The 𝐸8 and Leech Lattices
Many dimensions feature noteworthy sphere packings,
but the 𝐸8 root lattice in ℝ8 and the Leech lattice in ℝ24

are perhaps the most remarkable of all, with connections
to exceptional structures across mathematics. In this
section, we’ll construct 𝐸8 and prove some of its basic
properties. It was discovered by Korkine and Zolotareff in
1873, in the guise of a quadratic form they called𝑊8. We’ll
give a construction much like Korkine and Zolotareff’s
but more modern. The Leech lattice Λ24, discovered by
Leech in 1967, is similar in spirit, but more complicated.
In lieu of constructing it, we will briefly summarize its
properties.

To specify 𝐸8, we just need to describe a lattice basis
𝑣1,… ,𝑣8 in ℝ8. Furthermore, only the relative positions
of the basis vectors matter, so all we need to specify is
their inner products with each other. All this information
will be encoded by the Dynkin diagram

of 𝐸8. In this diagram, the eight nodes correspond to the
basis vectors, each of squared length 2. The inner product
between distinct vectors is −1 if the nodes are joined by
an edge, and 0 otherwise. Thus, if we number the nodes

1 2 3

4

5 6 7 8

then the Gram matrix of inner products for this basis is
given by

(⟨𝑣𝑖, 𝑣𝑗⟩)1≤𝑖,𝑗≤8(1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 −1 0 0 0
0 0 −1 2 0 0 0 0
0 0 −1 0 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Before we go further, we must address a fundamental
question: howdoweknowthere really are vectors𝑣1,… ,𝑣8
with these inner products? All we need is for the matrix
in (1) to be symmetric and positive definite, and indeed
it is, although it’s not obviously positive definite. That
can be checked in several ways. We’ll take the pedestrian
approach of observing that the characteristic polynomial
of this matrix is
𝑡8−16𝑡7+105𝑡6−364𝑡5+714𝑡4−784𝑡3+440𝑡2−96𝑡+1,
which clearly has no roots when 𝑡 < 0 because every term
is then positive.

We can now define the 𝐸8 root lattice to be the integral
span of 𝑣1,… ,𝑣8. We will use this definition to derive
several fundamental properties of 𝐸8. These properties
will let us determine its packing density, and they will
also be essential for Viazovska’s proof.

The 𝐸8 lattice is an integral lattice, which means all
the inner products between vectors in 𝐸8 are integers.
This follows immediately from the integrality of the
inner products of the basis vectors 𝑣1,… ,𝑣8. Even more
importantly,𝐸8 is an even lattice, whichmeans the squared
length of every vector is an even integer. Specifically, for
𝑚1,… ,𝑚8 ∈ ℤ the vector 𝑚1𝑣1 +⋯+𝑚8𝑣8 has squared
length
|𝑚1𝑣1+⋯+𝑚8𝑣8|2 =2𝑚2

1+⋯+2𝑚2
8+ ∑

1≤𝑖<𝑗≤8
2𝑚𝑖𝑚𝑗⟨𝑣𝑖, 𝑣𝑗⟩,

which is visibly even. Thus, the distances between distinct
points in 𝐸8 are all of the form √2𝑘 with 𝑘 = 1, 2,… , and
in fact each of those distances does occur.
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In particular, the distance between neighboring points
in 𝐸8 is √2, so we can form a packing with spheres of
radius √2/2 and density

vol(𝐵8
√2/2)

vol(ℝ8/𝐸8)
= 𝜋4

384 vol(ℝ8/𝐸8)
.

To compute the density of the 𝐸8 packing, all we need to
compute is vol(ℝ8/𝐸8).

To compute this volume, recall that it’s the absolute
value of the determinant of the basis matrix:

vol(ℝ8/𝐸8) =
||||||||
det

⎡⎢⎢⎢
⎣

⟵ 𝑣1 ⟶
⟵ 𝑣2 ⟶

⋮
⟵ 𝑣8 ⟶

⎤⎥⎥⎥
⎦

||||||||
.

However, we can write the Gram matrix (⟨𝑣𝑖, 𝑣𝑗⟩)1≤𝑖,𝑗≤8
as the product

⎡⎢⎢⎢
⎣

⟵ 𝑣1 ⟶
⟵ 𝑣2 ⟶

⋮
⟵ 𝑣8 ⟶

⎤⎥⎥⎥
⎦

⎡⎢⎢
⎣

↑ ↑ ↑
𝑣1 𝑣2 ⋯ 𝑣8

↓ ↓ ↓

⎤⎥⎥
⎦

of the basis matrix with its transpose, and thus

det (⟨𝑣𝑖, 𝑣𝑗⟩)1≤𝑖,𝑗≤8 = vol(ℝ8/𝐸8)2.
Computing thedeterminant of thematrix in (1) then shows
that vol(ℝ8/𝐸8) = 1. In other words, 𝐸8 is a unimodular
lattice.

Putting together our calculations, we have proved the
following proposition:

Proposition 1. The 𝐸8 lattice packing in ℝ8 has density
𝜋4/384 = 0.2536… .

The 𝐸8 lattice
is in fact

magnificently
symmetrical.

Our calculations so far have
led us to what turns out to
be the densest sphere pack-
ing in ℝ8, but it’s not obvious
from this construction that 𝐸8
is an especially interesting lat-
tice. The 𝐸8 lattice is in fact
magnificently symmetrical, far
more so than onemight naively
guess based on its lopsided
Dynkin diagram. Its symmetry group is the 𝐸8 Weyl group,
which is generated by reflections in the hyperplanes or-
thogonal to each of 𝑣1,… ,𝑣8. We will not make use of this
group, but it’s important to keep in mind that the lattice
itself is far more symmetrical than its definition. This
is a common pattern when defining highly symmetrical
objects.

Our density calculation for 𝐸8 was based on its being an
even unimodular lattice. In fact, 𝐸8 is the unique even uni-
modular lattice in ℝ8, up to orthogonal transformations.
Even unimodular lattices exist only when the dimension
is a multiple of eight, and they play a surprisingly large
role in the theory of sphere packing.

The last property of 𝐸8 we will need for Viazovska’s
proof is that it is its own dual lattice, a concept we will
define shortly. Given a lattice Λ with basis 𝑣1,… ,𝑣𝑛, let

Stephen D. Miller explains dual lattices and
transference theorems to his graduate class on the
geometry of numbers.

𝑣∗
1 ,… ,𝑣∗

𝑛 be the dual basis with respect to the usual inner
product. In other words,

⟨𝑣𝑖, 𝑣∗
𝑗 ⟩ = {1 if 𝑖 = 𝑗, and

0 otherwise.

Then the dual lattice Λ∗ of Λ is the lattice with basis
𝑣∗
1 ,… ,𝑣∗

𝑛 . It is notdifficult to check thatΛ∗ is independent
of the choice of basis for Λ; one basis-free way to
characterize it is that

(2) Λ∗ = {𝑦 ∈ ℝ𝑛 ∶ ⟨𝑥, 𝑦⟩ ∈ ℤ for all 𝑥 ∈ Λ}.
The self-duality 𝐸∗

8 = 𝐸8 is a consequence of the following
lemma:

Lemma 2. Every integral unimodular lattice Λ satisfies
Λ∗ = Λ.

Proof. Let 𝑣1,… ,𝑣𝑛 be a basis ofΛ, and 𝑣∗
1 ,… ,𝑣∗

𝑛 the dual
basis of Λ∗. By construction, the basis matrix formed by
𝑣∗
1 ,… ,𝑣∗

𝑛 is the inverse of the transpose of that formed
by 𝑣1,… ,𝑣𝑛, and hence vol(ℝ𝑛/Λ∗) = 1/vol(ℝ𝑛/Λ). If Λ
is an integral lattice, then Λ ⊆ Λ∗, and the index of Λ in
Λ∗ is given by

[Λ∗ ∶ Λ] = vol(ℝ𝑛/Λ)/vol(ℝ𝑛/Λ∗) = vol(ℝ𝑛/Λ)2.
If Λ is unimodular as well, then [Λ∗ ∶ Λ] = 1 and hence
Λ∗ = Λ. □

As mentioned above, the Leech lattice Λ24 is similar to
𝐸8 but more elaborate. It’s an even unimodular lattice in
ℝ24, but this time with no vectors of length √2, and it’s
the unique lattice with these properties, up to orthogonal
transformations. The nonzero vectors inΛ24 have lengths
√2𝑘 for 𝑘 = 2, 3,… , and of course Λ∗

24 = Λ24 because Λ24
is integral and unimodular. One noteworthy property of
Λ24 is that it’s chiral: all of its symmetries are orientation-
preserving, and the Leech lattice therefore occurs in
left-handed and right-handed variants, which are mirror
images of each other. (By contrast, the symmetry group
of 𝐸8 is generated by reflections, so 𝐸8 is certainly not
chiral.)
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Noam Elkies developed the linear programming
bounds for sphere packing with Henry Cohn.

The sphere packing density of the Leech lattice is

vol(𝐵24
1 )

vol(ℝ24/Λ24)
= 𝜋12

12! = 0.001929… ,

which looks awfully low, but keep in mind that the
optimal density decreases exponentially as a function
of dimension. In fact, the density of the Leech lattice
is remarkably high, as one can see from Figure 2 and
Table 1. For comparison, the best density known in ℝ23 is
0.001905… , which is lower than the density of the Leech
lattice, and this is the only case in which the density
increases from one dimension to the next in Table 1.

Linear Programming Bounds
The underlying technique used in Viazovska’s proof
is linear programming bounds for the sphere packing
density in ℝ𝑛. These upper bounds were developed by
Cohn and Elkies [2], based on several decades of previous
work initiated by Delsarte and extended by numerous
mathematicians. In this approach to sphere packing, one
uses auxiliary functions with certain properties to obtain
density bounds. Viazovska’s breakthrough consists of a
new technique for constructing these auxiliary functions,
but before we turn to her proof let’s examine the general
theory and review how the bounds work. We will see that
the general bounds do not refer to special dimensions
such as eight and twenty-four, which makes it all the
more remarkable that they can be used to solve the
sphere packing problem in these dimensions.

Linear programming bounds are based on harmonic
analysis. Thatmay sound surprising, since sphere packing
is a problem in discrete geometry, which at first glance
seems to have little to do with the continuous problems
studied in harmonic analysis. However, there is a deep
connection between these fields, because the Fourier
transform is essential for understanding the action of the
additive group ℝ𝑛 on itself by translation, so much so
that one can’t truly understand lattices without harmonic
analysis.

Define the Fourier transform 𝑓of an integrable function
𝑓∶ ℝ𝑛 → ℝ by

𝑓(𝑦) = ∫
ℝ𝑛

𝑓(𝑥)𝑒−2𝜋𝑖⟨𝑥,𝑦⟩𝑑𝑥.

Fourier inversion tells us that if 𝑓 is integrable as well,
then one can similarly recover 𝑓 from 𝑓:

(3) 𝑓(𝑥) = ∫
ℝ𝑛

𝑓(𝑦)𝑒2𝜋𝑖⟨𝑥,𝑦⟩𝑑𝑦

almost everywhere. In other words, the Fourier transform
gives the unique coefficients needed to express 𝑓 in terms
of complex exponentials.

To avoid analytic technicalities, we will focus on
Schwartz functions. Recall that 𝑓∶ ℝ𝑛 → ℝ is a Schwartz
function if 𝑓 is infinitely differentiable,

𝑓(𝑥) = 𝑂((1 + |𝑥|)−𝑘)
for all 𝑘 = 1, 2,… , and the same holds for all the
partial derivatives of 𝑓 (of every order). Schwartz

The key
technical tool
behind linear
programming
bounds is the

Poisson
summation
formula.

functions behave particu-
larly well, well enough to
justify everything we’d like
to do with them, and they
are closed under the Fourier
transform. We could get
by with weaker hypotheses,
but in fact Viazovska’s con-
structionproduces Schwartz
functions, so we might as
well focus on that case.

The significance of the
Fourier transform in sphere
packing is that it diago-
nalizes the operation of
translation by any vector.
Specifically, (3) implies that

𝑓(𝑥 + 𝑡) = ∫
ℝ𝑛

𝑓(𝑦)𝑒2𝜋𝑖⟨𝑡,𝑦⟩𝑒2𝜋𝑖⟨𝑥,𝑦⟩𝑑𝑦,

which means that translating the input to the function
𝑓 by 𝑡 amounts to multiplying its Fourier transform
𝑓(𝑦) by 𝑒2𝜋𝑖⟨𝑡,𝑦⟩. Simultaneously diagonalizing all these
translation operators makes the Fourier transform an
ideal tool for studying periodic structures.

The key technical tool behind linear programming
bounds is the Poisson summation formula, which ex-
presses a duality between summing a function over a
lattice and summing the Fourier transform over the dual
lattice, as defined in (2). Poisson summation says that if
𝑓 is a Schwartz function, then

(4) ∑
𝑥∈Λ

𝑓(𝑥) = 1
vol(ℝ𝑛/Λ) ∑

𝑦∈Λ∗
𝑓(𝑦).

In other words, summing 𝑓 over Λ∗ is almost the same
as summing 𝑓 over Λ, with the only difference being a
factor of vol(ℝ𝑛/Λ). When expressed in this form, Poisson
summation looks mysterious, but it becomes far more
transparent when written in the translated form

(5) ∑
𝑥∈Λ

𝑓(𝑥 + 𝑡) = 1
vol(ℝ𝑛/Λ) ∑

𝑦∈Λ∗
𝑓(𝑦)𝑒2𝜋𝑖⟨𝑦,𝑡⟩.
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This equation reduces to (4) when 𝑡 = 0, and it has
a simple proof. As a function of 𝑡, the left side of
(5) is periodic modulo Λ, while the right side is its
Fourier series. In particular, the right side uses exactly
the complex exponentials 𝑡 ↦ 𝑒2𝜋𝑖⟨𝑦,𝑡⟩ that are periodic
modulo Λ, namely those with 𝑦 ∈ Λ∗ (as follows easily
from (2)). Orthogonality let us compute the coefficient
of such an exponential, and some manipulation yields
𝑓(𝑦)/vol(ℝ𝑛/Λ).

Now we can state and prove the linear programming
bounds, which show how to convert a certain sort of aux-
iliary function into a sphere packing bound. Specifically,
we will use functions 𝑓∶ ℝ𝑛 → ℝ such that 𝑓 is eventually
nonpositive (i.e., there exists a radius 𝑟 such that 𝑓(𝑥) ≤ 0
for |𝑥| ≥ 𝑟) while 𝑓 is nonnegative everywhere.

Theorem 3 (Cohn and Elkies [2]). Let 𝑓∶ ℝ𝑛 → ℝ be a
Schwartz function and 𝑟 a positive real number such that
𝑓(0) = 𝑓(0) > 0, 𝑓(𝑦) ≥ 0 for all 𝑦 ∈ ℝ𝑛, and 𝑓(𝑥) ≤ 0 for
|𝑥| ≥ 𝑟. Then the sphere packing density in ℝ𝑛 is at most
vol(𝐵𝑛

𝑟/2).
The name “linear programming” refers to optimizing

a linear function subject to linear constraints. The opti-
mization problem of choosing 𝑓 so as to minimize 𝑟 can
be rephrased as an infinite-dimensional linear program
after a change of variables, but we will not adopt that
perspective here.

Proof. The proof consists of applying the contrasting in-
equalities 𝑓(𝑥) ≤ 0 and 𝑓(𝑦) ≥ 0 to the two sides of
Poisson summation. We will begin by proving the theorem
for lattice packings, which is the simplest case.

Suppose Λ is a lattice in ℝ𝑛, and suppose without
loss of generality that the minimal vector length of Λ
is 𝑟 (since the sphere packing density is invariant un-
der rescaling). In other words, the packing uses balls of
radius 𝑟/2, and its density is

vol(𝐵𝑛
𝑟/2)

vol(ℝ𝑛/Λ) .

Proving the desired density bound vol(𝐵𝑛
𝑟/2) for Λ

amounts to showing that vol(ℝ𝑛/Λ) ≥ 1. By Poisson
summation,

(6) ∑
𝑥∈Λ

𝑓(𝑥) = 1
vol(ℝ𝑛/Λ) ∑

𝑦∈Λ∗
𝑓(𝑦).

Now the inequality 𝑓(𝑥) ≤ 0 for |𝑥| ≥ 𝑟 tells us that the
left side of (6) is bounded above by 𝑓(0), and the inequal-
ity 𝑓(𝑦) ≥ 0 tells us that the right side is bounded below
by 𝑓(0)/vol(ℝ𝑛/Λ). It follows that

𝑓(0) ≥ 𝑓(0)
vol(ℝ𝑛/Λ) ,

which yields vol(ℝ𝑛/Λ) ≥ 1 because 𝑓(0) = 𝑓(0) > 0.
The general case is almost as simple, but the algebraic

manipulations are a little trickier. Because periodic pack-
ings come arbitrarily close to the optimal sphere packing
density, without loss of generality we can consider a pe-
riodic packing using balls of radius 𝑟/2, centered at the

translates of a lattice Λ ⊆ ℝ𝑛 by vectors 𝑡1,… , 𝑡𝑁. The
packing density is

𝑁 vol(𝐵𝑛
𝑟/2)

vol(ℝ𝑛/Λ) ,

and so we wish to prove that vol(ℝ𝑛/Λ) ≥ 𝑁.
We will use the translated Poisson summation formula

(5), which after a little manipulation implies that
𝑁
∑

𝑗,𝑘=1
∑
𝑥∈Λ

𝑓(𝑡𝑗−𝑡𝑘+𝑥) = 1
vol(ℝ𝑛/Λ) ∑

𝑦∈Λ∗
𝑓(𝑦)

||||||

𝑁
∑
𝑗=1

𝑒2𝜋𝑖⟨𝑦,𝑡𝑗⟩
||||||

2

.

Again we apply the contrasting inequalities on 𝑓 and 𝑓 to
the left and right sides, respectively. On the left, we ob-
tain an upper bound by throwing away every term except
when 𝑗 = 𝑘 and 𝑥 = 0; on the right, we obtain a lower
bound by throwing away every term except when 𝑦 = 0.
Thus,

𝑁𝑓(0) ≥ 𝑁2

vol(ℝ𝑛/Λ)𝑓(0),

which implies that vol(ℝ𝑛/Λ) ≥ 𝑁 and hence that the
density is at most vol(𝐵𝑛

𝑟/2), as desired. □

dimension
lo
g(

de
ns

ity
)

linear programming bound

best packing known

4 8 12 16 20 24 28 32 361
0

−14
Figure 4. The logarithm of sphere packing density as
a function of dimension. The upper curve is the
numerically optimized linear programming bound,
while the lower curve is the best packing currently
known. The truth lies somewhere in between.

Table 2. The linear programming bound for the
sphere packing density in ℝ𝑛 with 1 ≤ 𝑛 ≤ 36. All
numbers are rounded up.

𝑛 upper bound 𝑛 upper bound 𝑛 upper bound

1 1.000000000 13 0.0624817002 25 0.001384190723
2 0.906899683 14 0.0463644893 26 0.000991023890
3 0.779746762 15 0.0342482621 27 0.000708229796
4 0.647704966 16 0.0251941308 28 0.000505254217
5 0.524980022 17 0.0184640904 29 0.000359858186
6 0.417673416 18 0.0134853405 30 0.000255902875
7 0.327455611 19 0.0098179552 31 0.000181708382
8 0.253669508 20 0.0071270537 32 0.000128843289
9 0.194555339 21 0.0051596604 33 0.000091235604
10 0.147953479 22 0.0037259420 34 0.000064522197
11 0.111690766 23 0.0026842799 35 0.000045574385
12 0.083775831 24 0.0019295744 36 0.000032153056
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This proof
technique may
look absurdly
inefficient.

This proof technique
may look absurdly in-
efficient. We start with
Poisson summation, which
expresses a deep duality,
and then we recklessly
throw away all the non-
trivial terms, leaving only
the contributions from the
origin. One practical justi-

fication is that we have little choice in the matter, since
we don’t know what the other terms are (they all depend
on the lattice). A deeper justification is that the omit-
ted terms are generally small, and sometimes zero, so
omitting them is not as bad as it sounds.

To apply Theorem 3, we must choose an auxiliary
function 𝑓. The theorem then shows how to obtain a
density bound from 𝑓, but it says nothing about how to
choose 𝑓 so as to minimize 𝑟 and hence minimize the
density bound. Sadly, optimizing the auxiliary function
remains an unsolved problem, and the best possible
choice of 𝑓 is known only when 𝑛 = 1, 8, or 24.

As a first step towards solving this problem, note that
we can radially symmetrize 𝑓, so that 𝑓(𝑥) depends only
on |𝑥|, because all the constraints on 𝑓 are linear and
rotationally invariant. Then 𝑓 is really a function of one
radial variable, as is 𝑓. Functions of one variable feel like
they should be tractable, but this optimization problem
turns out to be impressively subtle.

If we can’t fully optimize the choice of 𝑓, then what
can we do? Several explicit constructions are known, but
in general we must resort to numerical computation. For
this purpose, it’s convenient to use auxiliary functions
of the form 𝑓(𝑥) = 𝑝(|𝑥|2)𝑒−𝜋|𝑥|2 , where 𝑝 is a polyno-
mial. These functions are flexible enough to approximate
arbitrary radial Schwartz functions, but simple enough
to be tractable. Numerical optimization then yields a
high-precision approximation to the linear programming
bound, which is shown in Figure 4 and Table 2.

The Hunt for the Magic Functions
The most striking property of Figure 4 is that the upper
and lower bounds in ℝ𝑛 seem to touch when 𝑛 = 8
or 24. In other words, there should be magic auxiliary
functions that solve the sphere packing problem in these
dimensions, by achieving 𝑟 = √2 in Theorem 3 when
𝑛 = 8 and 𝑟 = 2 when 𝑛 = 24. (These values of 𝑟 are
the minimal vector lengths in 𝐸8 and Λ24, respectively.)
This is exactly what has now been proved, and the proof
simply amounts to constructing an appropriate auxiliary
function. Linear programming bounds do not seem to be
sharp for any other 𝑛 > 2, which makes these two cases
truly remarkable.

The existence of thesemagic functionswas conjectured
by Cohn and Elkies [2] on the basis of numerical evidence
and analogies with other problems in coding theory.
Further evidence was obtained by Cohn and Kumar [3] in
the course of proving that the Leech lattice is the densest
lattice in ℝ24, while Cohn and Miller [5] carried out an

even more detailed study of the magic functions. These
calculations left nodoubt that themagic functions existed:
one could compute them to fifty decimal places, plot them,
approximate their roots and power series coefficients, etc.
They were perfectly concrete and accessible functions,
amenable to exploration and experimentation, which
indeed uncovered various intriguing patterns. All that
was missing was an existence proof.

However, proving existence was no easy matter. There
was no sign of an explicit formula, or any other charac-
terization that could lead to a proof. Instead, the magic
functions seemed to come out of nowhere.

The fundamental difficulty is explaining where the
magic comes from. One can optimize the auxiliary func-
tion in any dimension, but that will generally not produce
a sharp bound for the packing density. Why should eight
and twenty-four dimensions be any different? The numer-
ical results show that the bound is nearly sharp in those
dimensions, but why couldn’t it be exact for a hundred
decimal places, followed by random noise? That’s not a
plausible scenario for anyone with faith in the beauty of
mathematics, but faith does not amount to a proof, and
any proof must take advantage of special properties of
these dimensions.

For comparison, the answer is far less nice in six-
teen dimensions. By analogy with 𝑟 = √2 when 𝑛 = 8
and 𝑟 = 2 when 𝑛 = 24, one might guess that 𝑟 = √3
when 𝑛 = 16, but that bound cannot be achieved. In-
stead, numerical optimization seems to converge to
𝑟2 = 3.0252593116828820… , which is close to 3 but
not equal to it. This number has not yet been identified
exactly.

Despite the lack of an existence proof, the proof of
Theorem 3 implicitly describes what the magic functions
must look like:

Lemma 4. Suppose 𝑓 satisfies the hypotheses of the lin-
ear programming bounds for sphere packing in ℝ𝑛, with
𝑓(𝑥) ≤ 0 for |𝑥| ≥ 𝑟, and suppose Λ is a lattice in ℝ𝑛 with
minimal vector length 𝑟. Then the density of Λ equals the
bound vol(𝐵𝑛

𝑟/2) from Theorem 3 if and only if 𝑓 vanishes
on Λ\{0} and 𝑓 vanishes on Λ∗\{0}.

Proof. Recall that the proof of Theorem 3 for a lattice
Λ amounted to dropping all the nontrivial terms in the
Poisson summation formula, to obtain the inequality

𝑓(0) ≥ ∑
𝑥∈Λ

𝑓(𝑥) = 1
vol(ℝ𝑛/Λ) ∑

𝑦∈Λ∗
𝑓(𝑦) ≥ 𝑓(0)

vol(ℝ𝑛/Λ) .

The only way this argument could yield a sharp bound is
if all the omitted terms were already zero. In other words,
𝑓 proves that Λ is an optimal sphere packing if and only
if 𝑓 vanishes on Λ\{0} and 𝑓 vanishes on Λ∗\{0}. □

As discussed in the previous section, without loss of
generality we can assume that 𝑓 is a radial function, as
is 𝑓. We know exactly where the roots of 𝑓 and 𝑓 should
be, since 𝐸8 = 𝐸∗

8 with vector lengths √2𝑘 for 𝑘 = 1, 2,… ,
while Λ24 = Λ∗

24 with vector lengths √2𝑘 for 𝑘 = 2, 3,… .
These roots should have order two, to avoid sign changes,

110 Notices of the AMS Volume 64, Number 2



𝑓

√2 √4 √6 √8

𝑓

√2 √4 √6 √8

Figure 5. A schematic diagram showing the roots of the magic function 𝑓 and its Fourier transform 𝑓 in eight
dimensions. The figure is not to scale, because the actual functions decrease too rapidly for an accurate plot to
be illuminating.

except that the first root of 𝑓 should be a single root. See
Figure 5 for a diagram.

Thus, our problem is simple to state: how can we
construct a radial Schwartz function 𝑓 such that 𝑓 and 𝑓
have the desired roots and no others? Note that Poisson
summation over 𝐸8 or Λ24 then implies that 𝑓(0) = 𝑓(0),
and flipping the sign of 𝑓 if necessary ensures that all the
necessary inequalities hold.

Unfortunately it’s difficult to take advantage of this
characterization. The problem is that it’s hard to control
a function and its Fourier transform simultaneously:
it’s easy to produce the desired roots in either one
separately, but not at the same time. Our inability to
control 𝑓 without losing control of 𝑓 is at the root of
the Heisenberg uncertainty principle, and it’s a truly
fundamental obstacle.

Onenaturalway toapproach thisproblem is to carryout
numerical experiments. Cohn and Miller used functions
of the form 𝑓(𝑥) = 𝑝(|𝑥|2)𝑒−𝜋|𝑥|2 to approximate the
magic functions, where 𝑝 is a polynomial chosen to
force 𝑓 and 𝑓 to have many of the desired roots. Such
an approximation can never be exact, since it has only
finitely many roots, but it can come arbitrarily close to the
truth. This investigation uncovered several noteworthy
properties of themagic functions, which showed that they
had unexpected structure. For example, if we normalize
the magic functions 𝑓8 and 𝑓24 in 8 and 24 dimensions so
that 𝑓8(0) = 𝑓24(0) = 1, then Cohn and Miller conjectured
that their second Taylor coefficients are rational:

𝑓8(𝑥) = 1− 27
10|𝑥|

2 +𝑂(|𝑥|4),

𝑓8(𝑥) = 1− 3
2|𝑥|

2 +𝑂(|𝑥|4),

𝑓24(𝑥) = 1− 14347
5460 |𝑥|2 +𝑂(|𝑥|4),

𝑓24(𝑥) = 1− 205
156|𝑥|

2 +𝑂(|𝑥|4).

If all the higher-order coefficients had been rational as
well, then it would have opened the door to determining
these functions exactly, but frustratingly it seems that
the other coefficients are far more subtle and presumably
irrational. Themagic functions retained theirmystery, and
this Taylor series behavior went unexplained until the
exact formulas for the magic functions were discovered.

Given the difficulty of controlling 𝑓 and 𝑓 simulta-
neously, one natural approach is to split them into

eigenfunctions of the Fourier transform. By Fourier inver-
sion, every radial function 𝑓 satisfies ̂̂𝑓 = 𝑓. Thus, if we
set 𝑓+ = (𝑓 + 𝑓)/2 and 𝑓− = (𝑓 − 𝑓)/2, then 𝑓 = 𝑓+ + 𝑓−
with 𝑓+ = 𝑓+ and 𝑓− = −𝑓−. Because 𝑓 and 𝑓 vanish at the
same points, they share these roots with 𝑓+ and 𝑓−. Our
goal is therefore to construct radial eigenfunctions of the
Fourier transform with prescribed roots. The advantage
of this approach is that it conveniently separates into two
distinct problems, namely constructing the +1 and −1
eigenfunctions, but these problems remain difficult.

Modular Forms
Ever since theCohn-Elkiespaper in2003,number theorists
hadhoped to construct themagic functionsusingmodular
forms. The reasoning is simple: modular forms are deep
and mysterious functions connected with lattices, as are
the magic functions, so wouldn’t it make sense for them
to be related? Unfortunately, they are entirely different
sorts of functions, with no clear connection between them.
That’s where matters stood until Viazovska discovered
a remarkable integral transform, which enabled her to
construct the magic functions using modular forms. We’ll
get there shortly, but first let’s briefly review howmodular
forms work.

We’ll start with some examples. Every lattice Λ has a
theta series ΘΛ, defined by

(7) ΘΛ(𝑧) = ∑
𝑥∈Λ

𝑒𝜋𝑖|𝑥|2𝑧.

This series converges when ℑ𝑧 > 0, and it defines an
analytic function on the upper half-plane 𝔥 = {𝑧 ∈ ℂ ∶
ℑ𝑧 > 0}. To motivate the definition, think of the theta
series as a generating function, where the coefficient of
𝑒𝜋𝑖𝑡𝑧 counts the number of 𝑥 ∈ Λ with |𝑥|2 = 𝑡. However,
there’s one aspect not explained by the generating func-
tion interpretation: why write this function in terms of
𝑒𝜋𝑖𝑧? Doing so may at first look like a gratuitous nod to
Fourier series, but it leads to an elegant transformation
law based on applying Poisson summation to a Gaussian:

Proposition 5. If Λ is a lattice in ℝ𝑛, then

ΘΛ(𝑧) =
1

vol(ℝ𝑛/Λ) ( 𝑖
𝑧)

𝑛/2
ΘΛ∗(−1/𝑧)

for all 𝑧 ∈ 𝔥.
Proof. One of themost important properties of Gaussians
is that the set of Gaussians is closed under the Fourier
transform: the Fourier transform of a wide Gaussian is a
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narrow Gaussian, and vice versa. More precisely, for 𝑡 > 0
the Fourier transform of the Gaussian 𝑥 ↦ 𝑒−𝑡𝜋|𝑥|2 on ℝ𝑛

is 𝑥 ↦ 𝑡−𝑛/2𝑒−𝜋|𝑥|2/𝑡. In fact, the same holds whenever 𝑡 is
a complex number with ℜ𝑡 > 0, by analytic continuation.
Then Poisson summation tells us that

∑
𝑥∈Λ

𝑒−𝑡𝜋|𝑥|2 = 1
vol(ℝ𝑛/Λ) ∑

𝑦∈Λ∗
𝑡−𝑛/2𝑒−𝜋|𝑦|2/𝑡.

Setting 𝑧 = 𝑖𝑡, we find that

ΘΛ(𝑧) =
1

vol(ℝ𝑛/Λ) ( 𝑖
𝑧)

𝑛/2
ΘΛ∗(−1/𝑧)

whenever ℑ𝑧 > 0, as desired. □
If we set Λ = 𝐸8, then Λ∗ = 𝐸8 as well, and we find that

Θ𝐸8(−1/𝑧) = 𝑧4Θ𝐸8(𝑧).
Furthermore, 𝐸8 is an even lattice, and hence the Fourier
series (7) implies that

Θ𝐸8(𝑧 + 1) = Θ𝐸8(𝑧).
These two symmetries are the most important properties
of Θ𝐸8 . For exactly the same reasons, the theta series of
the Leech lattice Λ24 satisfies
ΘΛ24(−1/𝑧) = 𝑧12ΘΛ24(𝑧) and ΘΛ24(𝑧 + 1) = ΘΛ24(𝑧).
The mappings 𝑧 ↦ 𝑧 + 1 and 𝑧 ↦ −1/𝑧 generate

a discrete group of transformations of the upper half-
plane, called the modular group. It turns out to be the
same as the action of the group SL2(ℤ) on the upper
half-plane by linear fractional transformations, but we
will not need this fact except for naming purposes.

Amodular form of weight 𝑘 for SL2(ℤ) is a holomorphic
function 𝜑∶ 𝔥 → ℂ such that 𝜑(𝑧 + 1) = 𝜑(𝑧) and
𝜑(−1/𝑧) = 𝑧𝑘𝜑(𝑧) for all 𝑧 ∈ 𝔥, while 𝜑(𝑧) remains
bounded as ℑ𝑧 → ∞. (The latter condition is called being
holomorphic at infinity, because it means the singularity
there is removable.) It’s not hard to show that the weight
of a nonzero modular form must be nonnegative and
even, and the only modular forms of weight zero are the
constant functions.

We have seen that Θ𝐸8 and ΘΛ24 satisfy the trans-
formation laws for modular forms of weight 4 and 12,
respectively, and it is easy to check that they are holo-
morphic at infinity. Thus, these theta series are modular
forms.

There are a number of other well-known modular
forms. For example, the Eisenstein series 𝐸𝑘 defined by

𝐸𝑘(𝑧) =
1

2𝜁(𝑘) ∑
(𝑚,𝑛)∈ℤ2

(𝑚,𝑛)≠(0,0)

1
(𝑚𝑧+ 𝑛)𝑘

is a modular form of weight 𝑘 for SL2(ℤ) whenever
𝑘 is an even integer greater than 2 (while it vanishes
when 𝑘 is odd). The proofs of the required identities
𝐸𝑘(𝑧+1) = 𝐸𝑘(𝑧) and𝐸𝑘(−1/𝑧) = 𝑧𝑘𝐸𝑘(𝑧) simply amount
to rearranging the sum. Here 𝜁 denotes the Riemann
zeta function, and 2𝜁(𝑘) is a normalizing factor. The
advantage of this normalization is that it leads to the
Fourier expansion

(8) 𝐸𝑘(𝑧) = 1+ 2
𝜁(1 − 𝑘)

∞
∑
𝑚=1

𝜎𝑘−1(𝑚)𝑒2𝜋𝑖𝑚𝑧,

where 𝜎𝑘−1(𝑚) is the sum of the (𝑘 − 1)-st powers of
the divisors of 𝑚 and 𝜁(1 − 𝑘) turns out to be a rational
number.

The notational conflict between the Eisenstein series
𝐸𝑘 and the 𝐸8 lattice is unfortunate, but both notations
are well established. Fortunately, we will never need to set
𝑘 = 8, and the context should easily distinguish between
Eisenstein series and lattices.

Modular forms are highly constrained objects, which
makes coincidences commonplace. For example, Θ𝐸8 is
the same as 𝐸4, because there is a unique modular form of
weight 4 for SL2(ℤ)with constant term 1. Equivalently, for
𝑚 = 1,2,… there are exactly 240𝜎3(𝑚) vectors 𝑥 ∈ 𝐸8
with |𝑥|2 = 2𝑚. The theta series ΘΛ24 is not an Eisenstein
series, but it can be written in terms of them as

ΘΛ24 = 7
12𝐸

3
4 + 5

12𝐸
2
6 .

More generally, letℳ𝑘 denote the space of modular forms
of weight 𝑘 for SL2(ℤ). Then ⨁𝑘≥0 ℳ𝑘 is a graded ring,
because the product of modular forms of weights 𝑘 and ℓ
is a modular form of weight 𝑘+ℓ. This ring is isomorphic
to a polynomial ring on two generators, namely 𝐸4 and
𝐸6. In other words, the set

{𝐸𝑖
4𝐸

𝑗
6 ∶ 𝑖, 𝑗 ≥ 0 and 4𝑖 + 6𝑗 = 𝑘}

is a basis for the modular forms of weight 𝑘. In particular,
there is no modular form of weight 2 for SL2(ℤ), because
the weights of 𝐸4 and 𝐸6 are too high to generate such a
form.

Onecannotobtainamodular formofweight2bysetting
𝑘 = 2 in the double sum definition of 𝐸𝑘. The problem
is that rearranging the terms is crucial for proving
modularity, but when 𝑘 = 2 the series converges only
conditionally, not absolutely. Instead, we can define 𝐸2
using (8). That defines amerely quasimodular form, rather
than an actual modular form, because one can show that
𝐸2(−1/𝑧) = 𝑧2𝐸2(𝑧) − 6𝑖𝑧/𝜋 rather than 𝑧2𝐸2(𝑧). This
imperfect Eisenstein series will play a role in constructing
the magic functions.

By default all modular forms are required to be holo-
morphic, but we can of course consider quotients that are
no longer holomorphic. A meromorphic modular form is
the quotient of two modular forms, and it is weakly holo-
morphic if it is holomorphic on 𝔥 (but not necessarily at
infinity). Unlike the holomorphic case, there is an infinite-
dimensional space of weakly holomorphic modular forms
of each even weight, positive or negative. Allowing a pole
at infinity offers tremendous flexibility.

Modular forms
seem to have little

to do with the
magic functions.

On the face of it,
modular forms seem
to have little to do
with the magic func-
tions. In particular, it’s
not clear what modu-
lar forms have to do
with the radial Fourier
transform in 𝑛 dimen-
sions. One hint that

they may be relevant comes from the Laplace transform.
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As we saw when we looked at theta series, Gaussians are
a particularly useful family of functions for which we
can easily compute the Fourier transform. It’s natural to
define a function 𝑓 as a continuous linear combination of
Gaussians via

𝑓(𝑥) = ∫
∞

0
𝑒−𝑡𝜋|𝑥|2𝑔(𝑡)𝑑𝑡,

where the weighting function 𝑔(𝑡) gives the coefficient of
the Gaussian 𝑒−𝑡𝜋|𝑥|2 . This formula is simply the Laplace
transform of 𝑔, evaluated at 𝜋|𝑥|2.

Assuming 𝑔 is sufficiently well behaved, we can com-
pute 𝑓 by interchanging the Fourier transform with the
integral over 𝑡, which yields

𝑓(𝑦) = ∫
∞

0
𝑡−𝑛/2𝑒−𝜋|𝑦|2/𝑡𝑔(𝑡)𝑑𝑡

= ∫
∞

0
𝑒−𝑡𝜋|𝑦|2𝑡𝑛/2−2𝑔(1/𝑡)𝑑𝑡.

In other words, taking the Fourier transform of 𝑓 amounts
to replacing 𝑔 with 𝑡 ↦ 𝑡𝑛/2−2𝑔(1/𝑡).

As a consequence, if 𝑔(1/𝑡) = 𝜀𝑡2−𝑛/2𝑔(𝑡) with 𝜀 = ±1,
then 𝑓 = 𝜀𝑓. Thus, we can construct eigenfunctions of
the Fourier transform by taking the Laplace transform of
functions satisfying a certain functional equation. What’s
noteworthy about this functional equation is how much
it looks like the transformation law for a modular form
on the imaginary axis. If we set 𝑔(𝑡) = 𝜑(𝑖𝑡), then the
modular form equation 𝜑(−1/𝑧) = 𝑧𝑘𝜑(𝑧) with 𝑧 = 𝑖𝑡
corresponds to 𝑔(1/𝑡) = 𝑖𝑘𝑡𝑘𝑔(𝑡). If 𝜑 is a meromorphic
modular form of weight 𝑘 = 2 − 𝑛/2 that vanishes at
𝑖∞ and has no poles on the imaginary axis, then 𝑓 is a
radial eigenfunction of the Fourier transform in ℝ𝑛 with
eigenvalue 𝑖𝑘.

Of course this is far from the only way to construct
Fourier eigenfunctions, but it’s a natural way to construct
them from modular forms. As stated here, it’s clearly

Viazovska gets
around this
difficulty by a

bold construction

not flexible enough to
construct the magic
functions, because it
produces only one eigen-
value. If we take 𝑛 = 8
andweight 𝑘 = 2−𝑛/2 =
−2, then 𝑖𝑘 = −1, so
we can construct a −1
eigenfunction but not a
+1 eigenfunction for the
same dimension. This turns out not to be a serious obsta-
cle: there are many variants of modular forms (for other
groups or with characters), and it’s not hard to produce
eigenfunctions with both eigenvalues. However, there’s a
much worse problem. If we build an eigenfunction this
way, then there’s no obvious way to control the roots
of the eigenfunction using the Laplace transform. Given
that our goal is to prescribe the roots, this approach
seems to be useless. What’s holding us back is that we
have not taken full advantage of the modular form: we
are using only the identity 𝜑(−1/𝑧) = 𝑧𝑘𝜑(𝑧), and not
𝜑(𝑧+ 1) = 𝜑(𝑧).

Viazovska’s Proof
The fundamental problem with the Laplace transform
approach in the previous section is that it seems to be
impossible to achieve the desired roots. Viazovska gets
around this difficulty by a bold construction: she simply
inserts the desired roots by brute force, by including an
explicit factor of sin2(𝜋|𝑥|2/2), which vanishes to second
order at |𝑥| = √2𝑘 for 𝑘 = 1, 2,… and fourth order at
𝑥 = 0. In her construction for eight dimensions, both
eigenfunctions have the form

(9) sin2(𝜋|𝑥|2/2)∫
∞

0
𝑔(𝑡)𝑒−𝜋|𝑥|2𝑡𝑑𝑡

for some function 𝑔.
One obvious issue with this approach is that

sin2(𝜋|𝑥|2/2) vanishes more often than we would like.
Specifically, it vanishes to fourth order when 𝑥 = 0 and
second order when |𝑥| = √2, whereas we wish to have
no root when 𝑥 = 0 and only a first-order root when
|𝑥| = √2. To avoid this difficulty, the integral in (9) must
have poles at 0 and √2 as a function of |𝑥|, which cancel
the unwanted roots. The integral will converge only for
|𝑥| > √2, but the function defined by (9) extends to
|𝑥| ≤ √2 by analytic continuation.

Which choices of 𝑔 will produce eigenfunctions of the
Fourier transform inℝ8? This is not clear, because the fac-
tor of sin2(𝜋|𝑥|2/2) disrupts the straightforward Laplace
transform calculations from the end of the previous sec-
tion. Instead, Viazovska writes the sine function in terms
of complex exponentials and carries out elegant contour
integral arguments to show that (9) gives an eigenfunction
whenever 𝑔 satisfies certain transformation laws. Identi-
fying the right conditions on 𝑔 is not at all obvious, and
it’s the heart of her paper.

To get a +1 eigenfunction, Viazovska shows that it
suffices to take 𝑔(𝑡) = 𝑡2𝜑(𝑖/𝑡), where 𝜑 is a weakly
holomorphic quasimodular form of weight 0 and depth
2 for SL2(ℤ). Here, a quasimodular form of depth 2 is
a quadratic polynomial in 𝐸2 with modular forms as
coefficients, where 𝐸2 is the Eisenstein series of weight 2.
Recall that 𝐸2 fails to be a modular form because of the
strange transformation law 𝐸2(−1/𝑧) = 𝑧2𝐸2(𝑧)−6𝑖𝑧/𝜋,
but that functional equation works perfectly here.

To get a −1 eigenfunction, Viazovska shows that
it suffices to take 𝑔(𝑡) = 𝜓(𝑖𝑡), where 𝜓 is a weakly
holomorphic modular form of weight −2 for a subgroup
of SL2(ℤ) called Γ(2) and 𝜓 satisfies the additional
functional equation

𝜓(𝑧) = 𝜓(𝑧+ 1) + 𝑧2𝜓(−1/𝑧).
We have not discussed modular forms for other groups
such as Γ(2), but they are similar in spirit to those for
SL2(ℤ). In particular, the ring of modular forms for Γ(2)
is generated by two forms of weight 2, namely Θ4

ℤ (the
fourth power of the theta series of the one-dimensional
integer lattice) and its translate 𝑧 ↦ Θ4

ℤ(𝑧 + 1).
These conditions for 𝜑 and 𝜓 are every bit as arcane

as they look. It’s far from obvious that they lead to
eigenfunctions, but Viazovska’s contour integral proof
shows that they do. Even once we know that this method
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gives eigenfunctions, it’s unclear how to choose 𝜑 and
𝜓 to yield the magic eigenfunctions, or whether this is
possible at all.

Fortunately, one can write down some necessary con-
ditions, and then the simplest functions satisfying those
conditions work perfectly. In particular, we can take

𝜑 = 4𝜋(𝐸2𝐸4 −𝐸6)2
5(𝐸2

6 −𝐸3
4)

and

𝜓 = −32Θ4
ℤ|𝑇(5Θ8

ℤ − 5Θ4
ℤ|𝑇Θ4

ℤ + 2Θ8
ℤ|𝑇)

15𝜋Θ8
ℤ(Θ4

ℤ −Θ4
ℤ|𝑇)2

,

where 𝑓|𝑇 denotes the translate 𝑧 ↦ 𝑓(𝑧+1) of a function
𝑓.

Thus, to obtain the magic function for 𝐸8 we set

(10) 𝑓(𝑥)=sin2(𝜋|𝑥|2/2)∫
∞

0
(𝑡2𝜑(𝑖/𝑡)+𝜓(𝑖𝑡))𝑒−𝜋|𝑥|2𝑡𝑑𝑡

for the specific 𝜑 and 𝜓 identified by Viazovska. Because
the 𝜑 and 𝜓 terms yield eigenfunctions of the Fourier
transform, we find that

𝑓(𝑦) = sin2(𝜋|𝑦|2/2)∫
∞

0
(𝑡2𝜑(𝑖/𝑡) −𝜓(𝑖𝑡))𝑒−𝜋|𝑦|2𝑡𝑑𝑡.

The integral in the formula for 𝑓(𝑥) converges only when
|𝑥| > √2, but the one in the formula for 𝑓(𝑦) turns
out to converge whenever |𝑦| > 0, because the problem-
atic growth of the integrand cancels in the difference
𝑡2𝜑(𝑖/𝑡) −𝜓(𝑖𝑡).

These formulas define Schwartz functions that have
the desired roots, and one can check that 𝑓(0) = 𝑓(0) = 1,
but it’s not obvious that they satisfy the inequalities
𝑓(𝑥) ≤ 0 for |𝑥| ≥ √2 and 𝑓(𝑦) ≥ 0 for all 𝑦, because
there might be additional sign changes. In fact, these
inequalities hold for a fundamental reason:

(11) 𝑡2𝜑(𝑖/𝑡) +𝜓(𝑖𝑡) < 0 and 𝑡2𝜑(𝑖/𝑡) −𝜓(𝑖𝑡) > 0
for all 𝑡 ∈ (0,∞). In other words, the inequalities already
hold at the level of the quasimodular forms, with no need
to worry about the Laplace transform except to observe
that it preserves positivity. Note that the restriction of
the inequality 𝑓(𝑥) ≤ 0 to |𝑥| ≥ √2 fits perfectly into
this framework, because the integral in (10) diverges for
|𝑥| < √2 and thuswe do not obtain 𝑓(𝑥) ≤ 0 there. All that
remains is to prove the inequalities (11). Unfortunately,
no simple proof of these inequalities is known at present,
but one can verify them by reducing the problem to a
finite calculation.

Thus, Viazovska’s formula (10) defines the long-sought
magic function for 𝐸8 and solves the sphere packing
problem in eight dimensions. What about twenty-four di-
mensions? The same basic approach works, but choosing
the quasimodular forms requiresmore effort. Fortunately,
the conjectures by Cohn andMiller can be used to help pin
down the right choices. Once the magic function has been
identified, there are additional technicalities involved in
verifying the inequality for 𝑓, but these challenges can be
overcome, which leads to a solution of the sphere packing
problem in twenty-four dimensions.

Future Prospects
Nobody expects Viazovska’s proof to generalize to any
other dimensions above two. Why just eight and twenty-
four? At one level, we really don’t know why. Nobody
has been able to find a proof, or even a compelling
heuristic argument, that rules out similar phenomena in
higher dimensions. We can’t even rule out the possibility
that linear programming bounds might solve the sphere
packing problem in every sufficiently high dimension,
although that’s clearly ridiculous.

Despite our lack of understanding, the special role of
eight and twenty-four dimensions aligns with our expe-
rience elsewhere in mathematics. Mathematics is full of
exceptional or sporadic phenomena that occur in only
finitely many cases, and the 𝐸8 and Leech lattices are
prototypical examples. These objects do not occur in
isolation, but rather in constellations of remarkable struc-
tures. For example, both 𝐸8 and the Leech lattice are
connected with binary error-correcting codes, combinato-
rial designs, spherical designs, finite simple groups, etc.
Each of these connections constrains the possibilities,
especially given the classification of finite simple groups,
and there just doesn’t seem to be room for a similar
constellation in higher dimensions.

Instead, solving the sphere packing problem in further
dimensions will presumably require new techniques. One
particularly attractive case is the 𝐷4 root lattice, which is
surely the best sphere packing in ℝ4. This lattice shares
some of the wonderful properties of 𝐸8 and the Leech
lattice, but not enough for the four-dimensional linear
programming bound to be sharp. It would be a plausible
target for any generalization of this bound, and in fact
such a generalization may be emerging.

Buildingonworkof Schrijver, Bachoc andVallentin, and
other researchers, de Laat and Vallentin have generalized
linear programming bounds to a hierarchy of semidefinite
programming bounds [12]. Linear programming bounds
are the first level of this hierarchy, which means that 𝐸8
and the Leech lattice have the simplest possible proofs
from this perspective. What about 𝐷4? Perhaps this case
can be solved at one of the next few levels of the hierarchy.
Much work remains to be done here, and it’s unclear what
the prospects are for any particular dimension, but it is
not beyond hope that four dimensions could someday
join eight and twenty-four among the solved cases of the
sphere packing problem.
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Maryna Viazovska
Maryna Viazovska solved the sphere packing prob-
lem in ℝ8 while holding the Dirichlet Postdoctoral
Fellowship at the Berlin Mathematical School and the
Humboldt University of Berlin, and she will begin a
faculty position at the École Polytechnique Fédérale de
Lausanne in 2017. She received her PhD in 2013 at
the University of Bonn under the supervision of Don
Zagier, with a dissertation entitled Modular functions
and special cycles. In 2016, she was awarded the Salem
Prize “for her breakthrough work on densest sphere
packings in dimensions 8 and 24 using methods of
modular forms.”

Although the solution of the sphere packing prob-
lem in ℝ8 was Viazovska’s first publication on sphere
packing per se, she has long had an interest in dis-
crete geometry and optimization. While she was still
in graduate school, Viazovska and her coauthors An-
drei Bondarenko and Danylo Radchenko published an
important paper on the theory of spherical designs,
namely their 2013 Annals paper “Optimal asymptotic
bounds for spherical designs.” This paper analyzes how
uniformly one can distribute points over the surface of
a sphere. A spherical 𝑡-design on the unit sphere 𝑆𝑛−1

in ℝ𝑛 is a finite subset 𝒟 of 𝑆𝑛−1 such that for every
polynomial 𝑝∶ ℝ𝑛 → ℝ of total degree at most 𝑡, the
average of 𝑝 over 𝒟 is the same as its average over
the entire sphere 𝑆𝑛−1. In other words, the distribution
of points cannot be distinguished from the uniform
distribution by averaging a polynomial of degree at
most 𝑡. Even the existence of spherical designs with
arbitrarily large 𝑡 on a fixed sphere 𝑆𝑛−1 is not obvious,
and was first proved by Seymour and Zaslavsky in
1984. Viazovska and her coauthors showed that when
𝑛 is fixed, spherical 𝑡-designs exist with at most 𝑂(𝑡𝑛)
points, which matches a 1977 lower bound of Delsarte,
Goethals, and Seidel.

Acknowledgments. I am grateful to James Bernhard,
Donald Cohn, Matthew de Courcy-Ireland, Stephen D.
Miller, David Rohrlich, Achill Schürmann, Frank Val-
lentin, and Maryna Viazovska for their feedback and
suggestions.

References
[1] H. Cohn, Packing, coding, and ground states, PCMI 2014

lecture notes, 2016. arXiv:1603.05202
[2] H. Cohn and N. Elkies, New upper bounds on

sphere packings I, Ann. of Math. (2) 157 (2003),
no. 2, 689–714. arXiv:math/0110009 MR 1973059
doi:10.4007/annals.2003.157.689

[3] H. Cohn and A. Kumar, Optimality and uniqueness of
the Leech lattice among lattices, Ann. of Math. (2) 170
(2009), no. 3, 1003–1050. arXiv:math/0403263 MR 2600869
doi:10.4007/annals.2009.170.1003

[4] H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, and
M. Viazovska, The sphere packing problem in dimension 24,
preprint, 2016. arXiv:1603.06518

[5] H. Cohn and S. D. Miller, Some properties of optimal func-
tions for sphere packing in dimensions 8 and 24, preprint,
2016. arXiv:1603.04759

[6] J. H. Conway and N. J. A. Sloane, What are all the
best sphere packings in low dimensions? Discrete Com-
put. Geom. 13 (1995), no. 3–4, 383–403. MR 1318784
doi:10.1007/BF02574051

[7] , Sphere packings, lattices and groups, third edi-
tion, Grundlehren der Mathematischen Wissenschaften 290,
Springer, New York, 1999. MR 1662447 doi:10.1007/978-1-
4757-6568-7

[8] T. C. Hales, Cannonballs and honeycombs, Notices Amer.
Math. Soc. 47 (2000), no. 4, 440–449. MR 1745624

[9] T. C. Hales, A proof of the Kepler conjecture, Ann. of
Math. (2) 162 (2005), no. 3, 1065–1185. MR 2179728
doi:10.4007/annals.2005.162.1065

[10] T. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison,
T. L. Hoang, C. Kaliszyk, V. Magron, S. McLaughlin,
T. T. Nguyen, T. Q. Nguyen, T. Nipkow, S. Obua, J. Pleso,
J. Rute, A. Solovyev, A. H. T. Ta, T. N. Tran, D. T. Trieu,
J. Urban, K. K. Vu, and R. Zumkeller, A formal proof of the
Kepler conjecture, preprint, 2015. arXiv:1501.02155

[11] G. A. Kabatyanskii and V. I. Levenshtein, Bounds for
packings on a sphere and in space, Problems Inform,
Transmission 14 (1978), no. 1, 1–17. MR 0514023

[12] D. de Laat and F. Vallentin, A semidefinite programming
hierarchy for packing problems in discrete geometry, Math.
Program. 151 (2015), no. 2, Ser. B, 529–553. arXiv:1311.3789
MR 3348162 doi:10.1007/s10107-014-0843-4

[13] D. de Laat and F. Vallentin, A breakthrough in sphere
packing: the search for magic functions, Nieuw Arch. Wiskd.
(5) 17 (2016), no. 3, 184–192. arXiv:1607.02111

[14] A. Venkatesh, A note on sphere packings in high dimen-
sion, Int. Math. Res. Not. 2013 (2013), no. 7, 1628–1642.
MR 3044452 doi:10.1093/imrn/rns096

[15] M. S. Viazovska, The sphere packing problem in dimension
8, preprint, 2016. arXiv:1603.04246

Photo Credits
Photo of Maryna Viazovska is courtesy of Daniil Yev-

tushynsky.
Headshots of Henry Cohn, Abhinav Kumar,

Stephen D. Miller, and Danylo Radchenko are cour-
tesy of Mary Caisley, Mark Ostow, C. J. Mozzochi, and
Julia Semikina, respectively.

Figure 1 and photo of Noam Elkies are courtesy of Henry
Cohn.

Photo of Stephen D. Miller at the chalkboard is courtesy
of Matthew Kownacki.

Higher-Dimensional Sphere Packing
Learn about recent breakthroughs in our understand-
ing of hyperspheres in the first episode of PBS’s
Infinite Series, a show written and hosted by 2016
AMS Mass Media Fellow Kelsey Houston-Edwards
that tackles the mystery and the joy of mathematics.
https://www.youtube.com/watch?v=ciM6wigZK0w/.
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