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Abstract

Principal bundles connect differential geometry, algebraic topology and physics.

We first explain the most important concepts about principal bundles and study

them on the example of the Hopf bundle S1 ↪→ S3 → S2. We show that the Hopf

bundle is non-trivial by calculating its first Chern class. Then we describe how

magnetic monopoles and electromagnetism can be phrased in terms of principal

bundles. Motivated by quantum mechanics we study normalised eigenbundles of

Hamiltonians. Finally, we show that different Hopf bundles arise from normalised

eigenbundles of 2× 2 matrices.
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1 Introduction

The study of principal bundles brings together differential geometry, algebraic topology

and physics. One can think of a principal bundle as a manifold with a certain group

attached at every point, i.e. it is a fibre bundle where the fibre is a group. Moreover,

there is a well defined group action which can move a point in some fibre to any other

point in the same fibre. However, this group action does not move points form one fibre

to another. One very important example of a principal bundle is the Hopf bundle. For

the Hopf bundle we attach the group of unit complex numbers U(1) to the sphere S2.

But we attach it in such a way that we do not get S2 × U(1) but actually the sphere S3.

Since U(1) is just the circle S1, we write the Hopf bundle as S1 ↪→ S3 → S2. Analogous

constructions are possible if instead of complex numbers we take real numbers, quaternions

or octonions. With methods form algebraic topology it is possible to show that the Hopf

bundle is indeed different from the trivial bundle S2 × U(1).

In Section 2 the most important definitions connected to principal bundles are given.

We study the different concepts on the example of the Hopf bundle. In Section 3 we

define associated bundles and Chern classes and show that the Hopf bundle is non-trivial.

Then in Section 4 we look at different settings where principal bundles show up in physics

such as magnetic monopoles, Maxwell’s theory of electromagnetism and eigenstates of

Hamiltonians in quantum mechanics. Finally, we present a way of constructing Hopf

bundles via eigenvectors of 2× 2 matrices in Section 5. Here, we also encounter the Hopf

bundles S0 ↪→ S1 → S1 and S3 ↪→ S7 → S4 arising form real numbers and quaternions,

respectively.

I thank Prof. Dr. Giovanni Felder and Dr. Iuliya Beloshapka for taking their time to

supervise my work and for our enlightening discussions.

2 Principal bundles

2.1 Preliminaries

Definition 2.1. Let M and F be topological spaces. A fibre bundle over M with fibre F

is a tuple (E, π,M, F ) where

i) E is a topological space and π is a continuous surjective map π : E →M

ii) There is an open cover {Ui}i∈I of M such that for every i ∈ I there is a homeomor-

phism Φi : Ui × F → π−1(Ui) ⊂ E mapping {p} × F to π−1(p) for every p ∈ Ui.

E is called the total space, M is called the base space, for every p ∈ M the preimage

Ep := π−1(p) is called fibre at p and Φi is a local trivialisation.
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For a fibre bundle (E, π,M, F ) we may also write π : E → M or F ↪→ E → M and

take the other information as implicitly given.

Definition 2.2. Let G be a topological group. A principal G-bundle is a fibre bundle

π : E →M together with a continuous right action E ×G→ E such that

i) the action preserves the fibres, i.e. for all g ∈ G and p ∈M we have Epg = Ep

ii) on every fibre the action is free and transitive

iii) there is an open cover {Ui}i∈I of M such that for every i ∈ I there is a homeomorphism

Φi : Ui×G→ π−1(Ui) ⊂ E mapping {p}×G to π−1(p) for every p ∈ Ui and satisfying

Φi((p, g)h) = Φi((p, g))h for all g, h ∈ G and p ∈ Ui, where (p, g)h := (p, gh).

If additionally G is a Lie group, E and M are smooth manifolds and π, Φi and the right

action are smooth, then π : E →M is a smooth principal G-bundle.

In this chapter most statements can be formulated for both continuous and smooth

principal bundles. The changes one needs to make for smooth bundles are indicated in

brackets.

Remark 2.3. For a principal G-bundle π : E →M

i) The map π induces a homeomorphism E/G→M .

ii) Each fibre of a (smooth) principal G-bundle is homeomorphic (diffeomorphic) to G.

To see this, pick an element u ∈ π−1(p) = Ep and look at the map G→ Ep, g 7→ ug.

This is a homeomorphism (diffeomorphism) because G acts freely on Ep.

See Dupont (1978) Chapter 3 for more details.

Definition 2.4. Let πF : F → N and πE : E → M be (smooth) principal G-bundles.

A bundle map is a pair (f̄ , f) of continuous (smooth) maps such that f̄ is G-equivariant,

i.e. f̄(ug) = f̄(u)g and the following diagram commutes:

F E

MN

f̄

πE

f

πF

A bundle map is a bundle isomorphism if there is another bundle map forming a two

sided inverse.

Example 2.5. Let M and F be topological spaces. Then E = M × F together with

π : M × F → M , (p, f) 7→ p is a fibre bundle over M with fibre F . This fibre bundle is

called the trivial bundle. Any bundle isomorphic to the trivial bundle is called trivial.
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Definition 2.6. Let π : E → M be a (smooth) principal G-bundle. For an open subset

U of M a local section defined on U is a continuous (smooth) map σ : U → E such

that π ◦ σ = id|U . A global section is a continuous (smooth) map σ : M → E such that

π ◦ σ = id|M .

Proposition 2.7. A principal bundle admits a global section iff it is trivial.

Proof. This proof is based on Nakahara (2003) Section 9.4.3. Let (E, π,M,G) be a

principal bundle. Suppose s : M → E is a global section. For an element u ∈ E we

observe the following: For p = π(u), the two elements s(p) and u both lie in the same

fibre π−1(p). Since G acts freely on the fibre, there is a unique element g ∈ G such that

u = s(p)g. Hence, there is a well defined bundle isomorphism φ : E → M × G mapping

u = s(p)g to (p, g). Thus E is trivial.

Conversely, if φ : E →M ×G is a bundle isomorphism, we can define a global section

s : M → E through s(p) = φ−1(p, e).

Remark 2.8. Let M and N be homeomorphic (diffeomorphic) manifolds. Any principal

G-bundle over M is isomorphic to some principal G-bundle over N and vice versa.

Proof. Let πF : F → N be a principal G-bundle for some topological (or a Lie) group G

and let f : N →M be a homeomorphism (diffeomorphism). Then πE := f ◦πF : F →M

is a (smooth) principal G-bundle over M . The map (idF , f) is a bundle isomorphism.

Analogously, we can construct a principal bundle over N from a principal bundle over

M .

Example 2.9. The complex projective space CP 1 is defined as the quotient space CP 1 :=

(C2 \ {0})/ ∼, where α ∼ β iff α = λβ for some λ ∈ C. The equivalence class of (z1, z2)

in CP 1 is denoted by (z1 : z2). The set CP 1 is a one dimensional complex manifold and

the differentiable structure is given through CP 1 = U1 ∪ U2 where

U1 = {(z1 : z2)|z1 6= 0} = {(1 : z)|z ∈ C} ∼= C

U2 = {(z1 : z2)|z2 6= 0} = {(z : 1)|z ∈ C} ∼= C.

The space CP 1 is diffeomorphic to C ∪ {∞} through the map (z1 : z2) 7→ z1/z2.

Moreover, S2 is diffeomorphic to C ∪ {∞} through stereographic projection. Thus, CP 1

is diffeomorphic to S2 and let g denote the homeomorphism induced by the maps above.

Consider the projection f : C2 \ {0} → CP 1, (z1, z2) 7→ (z1 : z2). Viewing S3 as a subset

of C2 his gives us a map h := g ◦ f |S3 : S3 → S2, called the Hopf map. Explicitly, the

Hopf map is given through

h(z1, z2) = (2z1z̄2, |z1|2 − |z2|2).

We claim that h : S3 → S2 is a smooth principal U(1)-bundle.
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Proof. First, we have a group action S3 × U(1) → S3, (z1, z2, λ) 7→ (z1λ, z2λ), which is

well defined since |λ| = 1. Second, we have to check the locality condition, i.e. that

π−1(Ui) ∼= Ui × U(1) for some open cover {Ui} of S2. By Remark 2.8 we can verify this

for the map f : S3 → CP 1 instead.

We construct diffeomorphisms φ1 and φ2

φ1 : U1 × U(1)→ {(z1, z2) ∈ S3|z1 6= 0} = f−1(U1)

φ2 : U2 × U(1)→ {(z1, z2) ∈ S3|z2 6= 0} = f−1(U2)

which are compatible with the action of U(1). Let us take

φ1 :((1 : z), λ) 7→ 1√
1 + |z|2

(λ, zλ)

φ2 :((z : 1), λ) 7→ 1√
1 + |z|2

(zλ, λ)

These maps are invertible since their inverse is given by

φ−1
1 :(z1, z2) 7→ ((1 : z2/z1), z1/|z1|)

φ−1
2 :(z1, z2) 7→ ((z1/z2 : 1), z2/|z2|)

Moreover, the maps are compatible with the right action, since

φ−1
1 ((z1, z2)λ) = ((1 : z2λ/z1λ), z1λ/|z1λ|) = ((1 : z2/z1), z1λ/|z1|) = φ−1

1 ((z1, z2))λ

where we used that |λ| = 1. Analogously for φ2.

Definition 2.10. Suppose Φi and Φj are local trivialisations of a principal G-bundle

π : E →M .

Φi :Ui ×G→ π−1(Ui)

Φj :Uj ×G→ π−1(Uj)

For p ∈ Ui ∩Uj and the identity element e ∈ G both Φi(p, e) and Φj(p, e) lie on the same

fibre π−1(p). Hence there is an element tji(p) ∈ G such that Φi(p, e) = Φj(p, e)tji(p) =

Φj(p, tji(p)). We call tji : Ui ∩ Uj → G a transition function. The transition function is

continuous since tji(p) = π2 ◦Φ−1
j ◦Φi ◦ ι(p) where π2 : Uj×G→ G denotes the projection

onto the second component and ι is the inclusion ι : Ui → Ui × G, p 7→ (p, e). Note that

for arbitrary g ∈ G we have Φi(p, g) = Φj(p, tji(p)g). For smooth principal bundles the

transition functions are smooth.

Example 2.11. We now want to calculate the transition functions for the local trivial-
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isations we chose for the Hopf bundle in Example 2.9. By definition, for x ∈ U1 ∩ U2 :

φ1(x, 1) = φ2(x, 1)t21(x), where t21 is one of the transition functions we are looking for.

Elements of U1 ∩ U2 are of the form (z1 : z2) where z1, z2 6= 0. We have

φ1((z1 : z2), 1) =
1√

1 + |z2|2/|z1|2
(1, z2/z1)

φ2((z1 : z2), 1) =
1√

1 + |z1|2/|z2|2
(z1/z2, 1)

Thus we get for z = z2/z1

t21((1 : z)) = t21((z1 : z2)) =

√
1 + |z1|2/|z2|2√
1 + |z2|2/|z1|2

z2

z1

=
|z1|
z1

z2

|z2|
=

z

|z|

and hence t12((1 : z)) = |z|/z.

Remark 2.12. (see Dupont (1978) Chapter 3) Let G be a Lie group and M a smooth

manifold. Suppose there is an open cover {Uα} of M together with transition functions

satisfying tγβtβα = tγα on Uα ∩ Uβ ∩ Uγ and tαα = 1 on Uα. Then there is a principal

bundle with total space

E :=

(∐
α

Uα ×G

)
/ ∼

where (p, g) ∈ Uα ×G ∼ (p, tβα(p)g) ∈ Uβ ×G for all p ∈ Uα ∩ Uβ and g ∈ G.

Definition 2.13. Let π : E → M be a (smooth) principal G-bundle, N a topological

space (smooth manifold) and f : N →M a continuous (smooth) map. The pullback is the

(smooth) principal G-bundle f ∗π : f ∗E → N with f ∗E = {(q, e) | f(q) = π(e)} ⊂ N ×E
and f ∗π(q, e) = q, where the right G-action is given by (q, e)g = (q, eg).

Proposition 2.14. Let π : E → M be a principal G-bundle and f1, f2 : N → M

homotopic maps. Then the pullback bundles f ∗1E and f ∗2E are isomorphic.

For a proof see Cohen (2002) Chapter 2.1.

One can show that for homotopy equivalent spaces X and Y the principal G-bundles

over X are in 1 to 1 correspondence with the principal G-bundles over Y . One can formu-

late this by introducing universal G-bundles. Let PrinG(X) denote the set of isomorphism

classes of principal G-bundles over X. Let π : E → B be a principal G-bundle, where

B is a connected space. For every continuous map f : X → B the pullback construction

gives an element of PrinG(X). By Proposition 2.14 the pullback construction induces a

map [X,B]→ PrinG(X).

Definition 2.15. A principal G-bundle p : E → B is called universal if for every space

X the pullback construction

[X,B]→ PrinG(X)
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is a bijection.

The hard bit is then to prove the existence of a universal bundle.

Theorem 2.16. For any topological group G there exists a universal G-bundle.

This is Theorem 2.21 in Cohen (2002). From this we obtain the following result.

Corollary 2.17. If X and Y are homotopy equivalent spaces and G is a topological group

then the sets PrinG(X) and PrinG(Y ) are isomorphic.

Proof. By Theorem 2.16 there is a universal G-bundle p : E → B. By the universal

property we have PrinG(X) ∼= [X,B] and PrinG(Y ) ∼= [Y,B]. Since X and Y are

homotopy equivalent, we have [X,B] ∼= [Y,B] and thus PrinG(X) ∼= PrinG(Y ) .

From now on we implicitly assume all principal bundles to be smooth.

Definition 2.18. Let H and G be two Lie groups and suppose α : H → G is a Lie

group homomorphism. Let π : F → M be a principal H-bundle and let ζ : E → M be a

principal G-bundle. We say that F is a reduction of E or E is an extension of F relative

to α if there is a differentiable map ϕ : F → E such that

i) ϕ(Fp) ⊂ Ep for all p ∈M and

ii) ϕ(uh) = ϕ(u)α(h) for all h ∈ H and u ∈ F .

Proposition 2.19. A principal U(n)-bundle can be extended to a principal GL(n,C)-

bundle.

Proof. Let π : F → M be a principal U(n)-bundle with local trivialisations φi : Ui ×
U(n) → π−1(Ui) ⊂ F and transition functions tji : Ui ∩ Uj → U(n). The inclusion

ι : U(n)→ GL(n,C) is a Lie group homomorphism. Let ιi : Ui × U(n)→ Ui ×GL(n,C)

denote the inclusions. Fist we want to construct a principal GL(n,C)-bundle. Define

E := (
∐

i Ui ×GL(n,C)) / ∼ where (p, g) ∈ Ui×GL(n,C) ∼ (p, tji(p)g) ∈ Uj ×GL(n,C)

for all p ∈ Ui ∩ Uj and g ∈ GL(n,C). The right action of GL(n,C) on E is defined

through [(p, g)]h = [(p, gh)] and a projection ζ from E to M is given through [(p, g)] 7→ p.

This makes E a principal GL(n,C)-bundle with local trivialisations ψi : Ui×GL(n,C)→
ζ−1(Ui), (p, g) 7→ [(p, g)]. The transition functions for the ψi are the same as for the local

trivialisations φi of F .

Now define ϕi : π−1(Ui) → ζ−1
i (Ui) as ϕi := ψi ◦ ιi ◦ φ−1

i . For u ∈ π−1(Ui ∩ Uj) write

φ−1
i (u) = (p, g). By definition of the transition functions we have φ−1

j (u) = (p, tji(p)g).

Hence, ϕj(u) = ψj(p, tji(p)g) = ψi(p, g) = ϕi(u). Thus we get a well defined map ϕ :

F → E with ϕ|Ui = ϕi. This map ϕ satisfies the properties from Definition 2.18, so E is

an extension of F .
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2.2 Connections

Definition 2.20. Let E be a principal G-bundle. Let g be the Lie algebra of G.

For any a ∈ g and u ∈ E, we have a curve through u defined by u exp(ta). Hence,

ξu(a) := d
dt

∣∣
t=0

u exp(ta) ∈ TuE. The vector field ξ(a) is called the fundamental vector

field generated by a.

Remark 2.21. The curve u exp(ta) lies in one fibre Ep, where π(u) = p. Thus ξu(a)

belongs to Tu(Ep). Moreover, note that ξu is linear. Since G acts freely on Ep, the map

ξu is injective. Now Tu(Ep) and g have the same dimension, thus ξu : g → Tu(Ep) is an

isomorphism. We denote its inverse by ιu.

Proposition 2.22. The map ξ : g → Γ(TE) is a Lie algebra homomorphism, i.e.

ξ([a, b]) = [ξ(a), ξ(b)].

For a proof see Dupont (1978) Chapter 3.

Example 2.23. We want to calculate the fundamental vector field of the Hopf bundle. Let

z ∈ S3. If we write z = (z1, z2) for complex numbers z1 and z2, the action of U(1) is given

by (z1, z2)λ = (z1λ, z2λ). We can express z through real coordinates, z = (x1, x2, x3, x4) =

(Re(z1), Im(z1),Re(z2), Im(z2)). Then the action is given by (x1, x2, x3, x4)(a + ib) =

(x1a− x2b, x1b+ x2a, x3a− x4b, x3b+ x4a). Moreover, note that Lie(U(1)) = iR.

Now we calculate the fundamental vector field. Let a ∈ R and (x1, x2, x3, x4) ∈ S3.

Using exp(ita) = cos(ta) + i sin(ta) we get

ξ(ia)((x1, x2, x3, x4)) =
d

dt

∣∣∣∣
t=0

(x1, x2, x3, x4) exp(ita) =
d

dt

∣∣∣∣
t=0

(x1 cos(ta)− x2 sin(ta),

x1 sin(ta) + x2 cos(ta), x3 cos(ta)− x4 sin(ta), x3 sin(ta) + x4 cos(ta))

= a(−x2, x1,−x4, x3) = a

(
−x2

∂

∂x1

+ x1
∂

∂x2

− x4
∂

∂x3

+ x3
∂

∂x4

)
Definition 2.24. Let E be a principal G-bundle. Let Rg be the right action Rg : E →
E, u 7→ ug. Let adg be the action on g induced by the adjoint action on G.

Definition 2.25. Let E be a principal G-bundle. Let u ∈ E and p = π(u). The vertical

subspace VuE is the subspace of TuE which is tangential to the fibre Ep.

With this notation Remark 2.21 states that ξu : g→ VuE is an isomorphism.

Definition 2.26. Let E be a principal G-bundle. A connection on E is a unique separa-

tion of the tangent space TuE into the vertical subspace VuE and the horizontal subspace

HuE such that

(i) TuE = HuE
⊕

VuE for all u ∈ E
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(ii) A smooth vector field X on E is separated into smooth vector fields XH
u ∈ HuE and

XV
u ∈ VuE as X = XH +XV

(iii) HugE = (HuE)g = Rg∗(HuE) for all u ∈ E and g ∈ G.

Definition 2.27. Let E be a principal G-bundle and let g be the Lie algebra of G. A

connection form ω is a g valued one form, i.e. ω ∈ g⊗ T ∗E such that

(i) ω(ξ(a)) = a for all a ∈ g

(ii) R∗gω = Adg−1ω

Note that VuE = {ξ(ω(v)) | v ∈ TuE}. Interpreting ω as projection onto the vertical

subspace gives a link between connection forms and connections:

Proposition 2.28. Connection forms and connections are equivalent in the following

sense: A connection form ω defines a connection through HuE := {v ∈ TuE | ω(v) = 0}.
Conversely, given a connection on a principal G-bundle E, we can define a connection

one form through ωu := ιu ◦ Vu where Vu : TuE → VuE is the projection onto the vertical

subspace.

For a proof see Westenholz (1978) Chapter 11 or Nakahara (2003) Section 10.1.

Remark 2.29. For principal bundles over paracompact differentiable manifolds connec-

tions always exists. This can be shown making use of the local triviality condition and a

partition of unity (see Corollary 3.11 in Dupont (1978)).

We now want to define a connection on the Hopf bundle. A connection corresponds

to a projection onto the vertical subspace. In this case, the vertical subspace is one

dimensional and spanned by the vector −x2
∂
∂x1

+ x1
∂
∂x2
− x4

∂
∂x3

+ x3
∂
∂x4

, as calculated in

Example 2.23. So up to some factor we want our connection to be the dual of this vector,

i.e. −x2dx1 + x1dx2 − x4dx3 + x3dx4.

Example 2.30. Let ω̃ = i(x1dx2 − x2dx1 + x3dx4 − x4dx3) be a Lie(U(1)) = iR valued

1-form on R4. We restrict ω̃ to S3 and call it ω. We claim that ω is a connection on the

Hopf bundle.

Proof. We have to show that

i) ω(ξ(a)) = a for all a ∈ iR and that

ii) R∗gω = Adg−1ω.

For i) recall from Example 2.23 that ξ(a) = −ia
(
−x2

∂
∂x1

+ x1
∂
∂x2
− x4

∂
∂x3

+ x3
∂
∂x4

)
.

Thus, ω(ξ(a)) = a(x2
1 + x2

2 + x2
3 + x2

4) = a.

9



For ii) we choose x = (x1, x2, x3, x4) ∈ S3, v = v1
∂
∂x1

+v2
∂
∂x2

+v3
∂
∂x3

+v4
∂
∂x4
∈ TxS3 and

λ = a+ ib ∈ U(1). We observe that (Adλ−1ω)x(v) = ωx(v) = i(x1v2−x2v1 +x3v4−x4v3).

On the other hand we have x · λ = (x1a − x2b, x1b + x2a, x3a − x4b, x3b + x4a). Thus

Rλ∗(v) = (v1a − v2b, v1b + v2a, v3a − v4b, v3b + v4a). Hence ωx·λ(Rλ∗(v)) = i((x1a −
x2b)(v1b+v2a)− (x1b+x2a)(v1a−v2b)+(x3a−x4b)(v3b+v4a)− (x3b+x4a)(v3a−v4b)) =

i(x1v2 − x2v1 + x3v4 − x4v3), where we used a2 + b2 = 1. Thus ω is a connection.

Let π : E → M be a principal G-bundle and let {Ui}i∈I be a open cover of M such

that there are local trivialisations φi : Ui ×G→ π−1(Ui).

Definition 2.31. Suppose ω is a connection 1-form on E. Let σi : Ui → E be a local

section. We define the local connection 1-form Ai on Ui as the pullback Ai := σ∗i ω.

Proposition 2.32. Suppose ω is a connection 1-form on E. Let σi : Ui → E and

σj : Uj → E be local sections. For all p ∈ Ui ∩Uj the local forms Ai = σ∗i ω and Aj = σ∗jω

satisfy the compatibility condition

Aj = t−1
ij Aitij + t−1

ij dtij, (1)

where tij : Ui ∩ Uj → G is the transition function.

For a proof see Nakahara (2003) Section 10.1.

Theorem 2.33. Suppose that for all i ∈ I there are local g-valued 1-forms Ai on Ui.

Define the functions gi : π−1(Ui)→ G through φ−1
i (u) = (p, gi(u)). On π−1(Ui) define the

1-form ωi = g−1
i π∗Aigi + g−1

i dgi.

i) If Ai and Aj satisfy Equation (1) for p ∈ Ui ∩ Uj then ωi = ωj on π−1(Ui ∩ Uj).

ii) Suppose that for every pair i, j ∈ I for p ∈ Ui∩Uj Equation (1) is satisfied. Then there

is a connection 1-form ω such that for all i ∈ I we have σ∗i ω = Ai and ω|π−1(Ui) = ωi.

For a proof see Nakahara (2003) Section 10.1.

Example 2.34. For the Hopf bundle h : S3 → S2 local connection forms are given by

A1 =
i

2
(1− cos θ)dϕ and A2 = − i

2
(1 + cos θ)dϕ

in spherical coordinates (cosϕ sin θ, sinϕ sin θ, cos θ) on U1 := S2 \ {(0, 0,−1)} and U2 :=

S2 \ {(0, 0, 1)}, respectively. For a proof see Shnir (2005) Section 3.3.

2.3 Curvature

Let Ωr(M) denote the space of all differential r-forms on a manifold M . For a vector

space V the space of V -valued r-forms on M is denoted by V ⊗ Ωr(M). The exterior

10



derivative on differential forms can be extended to vector valued forms as follows: For

pure tensors we set d(v ⊗ φ) = v ⊗ dφ and extend this by linearity.

Definition 2.35. Let E be a principal G-bundle over M with a given connection. Let

φ ∈ g⊗ Ωr(E) be a Lie algebra valued r-form on E. Let u ∈ E and X1, ..., Xr+1 ∈ TuE.

Let hu : TuE → HuE denote the projection onto the horizontal subspace. The covariant

derivative of φ is given by

Dφ(X1, ..., Xr+1) = dφ(h(X1), ..., h(Xr+1))

Definition 2.36. Let E be a principal G-bundle over M with a given connection. The

curvature 2-form Ω ∈ g⊗Ω2(E) is the covariant derivative of the connection one form ω.

Theorem 2.37. (Cartan’s structure equation) For X, Y ∈ TuE we have

Ω(X, Y ) = dω(X, Y ) + [ω(X), ω(Y )]. (2)

For the proof see for example Nakahara (2003) Section 10.3.2.

Example 2.38. In Example 2.30 we saw that ω = i(x1dx2 − x2dx1 + x3dx4 − x4dx3)

defines a connection 1-form on the Hopf bundle. We want to calculate the curvature

2-form using Cartan’s structure equation. Since in this example the Lie algebra U(1) is

commutative the equation reduces to Ω = dω. Hence,

Ω = 2i(dx1 ∧ dx2 + dx3 ∧ dx4)

= dz̄1 ∧ dz1 + dz̄2 ∧ dz2,

where z1 = x1 + ix2 and z2 = x3 + ix4.

Definition 2.39. Let U be a chart of M and σ : U → E a local section. The local form

F of the curvature Ω is defined as F = σ∗Ω.

Remark 2.40. Let A = σ∗ω be the local connection form. Since σ∗dω = d(σ∗ω) it

follows from Equation (2) that

F (X, Y ) = dA(X, Y ) + [A(X), A(Y )].

For more details see Nakahara (2003) Section 10.3.4.

Remark 2.41. Suppose the curvature form Ω can be written as Ω = π∗F for some

F ∈ g⊗Ω2(M). Then for any local section σ : U → E we get σ∗Ω = (π ◦σ)∗F = F on U .

Theorem 2.42. Let Ui and Uj be two charts of M and let Fi and Fj be local curvature

forms on Ui and Uj coming from the same connection. Then on Ui ∩ Uj the following

11



compatibility condition is satisfied:

Fj = t−1
ij Fitij,

where tij is the transition function.

This is shown in Nakahara (2003) Section 10.3.4.

Example 2.43. We now want to calculate a local curvature form on the Hopf bundle,

namely for the chart U2
∼= C. Recall the projection g : S3 → CP 1, (z1, z2) 7→ (z1 : z2).

For z2 6= 0 we may write (z1 : z2) = (z1/z2 : 1) = (z : 1).

We make the ansatz F = f(z)dz̄ ∧ dz and want Ω = g∗F . We calculate g∗dz =

d(z1/z2) = (z2dz1 − z1dz2)/z2
2 . Thus g∗(dz̄ ∧ dz) = (|z2|2dz̄1 ∧ dz1 + |z1|2dz̄2 ∧ dz2 −

z̄2z1dz̄1 ∧ dz2 − z̄1z2dz̄2 ∧ dz1)/|z2|4. Now note that 1 = |z1|2 + |z2|2 = z1z̄1 + z2z̄2 implies

0 = z1dz̄1+z̄1dz1+z2dz̄2+z̄2dz2. Thus we get z̄2z1dz̄1∧dz2 = −z̄2z̄1dz1∧dz2−|z2|2dz̄2∧dz2

and z̄1z2dz̄2 ∧ dz1 = −|z1|2dz̄1 ∧ dz1 − z̄1z̄2dz2 ∧ dz1. So we actually have g∗(dz̄ ∧ dz) =

(|z1|2 + |z2|2)(dz̄1 ∧ dz1 + dz̄2 ∧ dz2)/|z2|4 = (|z1|2 + |z2|2)Ω/|z2|4. Since 1 = |z1|2 + |z2|2

we can multiply the equation by this to get g∗(dz̄ ∧ dz) = (|z1/z2|2 + 1)2Ω = (|z|2 + 1)2Ω.

Therefore, choosing

F =
dz̄ ∧ dz

(1 + |z|2)2

gives us the desired property Ω = g∗F .

3 Associated bundles

Proposition 3.1. Suppose G is a Lie group acting on the left on some manifold X. Let

E be a principal bundle. We define an equivalence relation on E ×X as follows: for any

g ∈ G: (u, x) ∼ (ug−1, gx). Then the quotient space χ := E ×G X := (E × X)/ ∼ is a

fibre bundle with fibre X. This fibre bundle is called the associated fibre bundle.

For a proof see (Westenholz; 1978) Chapter 6.

Definition 3.2. A vector bundle is a fibre bundle where the fibre is a vector space and

every local trivialisation Φi is a linear isomorphism of vector spaces.

Proposition 3.3. Suppose E is a principal G-bundle and V is a vector space. Let ρ :

G → GL(V ) be a representation of G. Then E ×ρ V := (E × V )/ ∼ where ∀g ∈ G:

(u, v) ∼ (ug−1, ρ(g)v) is a vector bundle with fibre V . It is called the associated vector

bundle.

This is shown in Nakahara (2003) Section 9.4.2.

We can also construct a principal bundle from a vector bundle:

12



Definition 3.4. Suppose π : P → M is a vector bundle with fibres Pp ∼= Rk. For every

fibre Pp of P we denote the set of all (ordered) bases by Fp. We define the frame bundle as

E :=
⋃
p∈M{p} × Fp together with the projection πE : E →M onto the first component.

The differentiable structure on E is given as follows. First note that the bases of Rk are

exactly the elements of GL(k,R) when we identify the basis vectors with the columns

of a matrix. Thus if φ : U × Rk → π−1(U) is a local trivialisation of P we get a map

φE : U×GL(k,R)→ π−1
E (U) given by (p, (v1, .., vk)) 7→ (p, (b1, ..., bk)), where φ(p, vi) = bi.

Demanding the φE to be local trivialistations of E (i.e. diffeomorphisms) gives us the

differentiable structure on E.

Proposition 3.5. Let P be a vector bundle over M with fibre V . Then the frame bundle is

a principal GL(V )-bundle over M , where GL(V ) acts on the bases by matrix multiplication

from the right.

This is shown in Westenholz (1978) Chapter 6.

Remark 3.6. If the vector bundle carries a metric one can also define orthonormal and

unitary frame bundles by restricting to orthonormal bases and O(k) or unitary bases and

U(k), respectively. These bundles then are reductions of the GL(k,R) frame bundle. (see

Proposition 2.19).

Example 3.7. Let E be the Hopf bundle and V = C. We want to examine the associated

bundle χ = S3 ×U(1) C. According to Proposition 3.3, χ is a one dimensional complex

vector bundle over S2. Recall f and U1 from Example 2.9. We define the map f̄ :

S3×U(1)C→ CP 1, [(p, z)] 7→ f(p). This map is well defined, since f(λp) = f(p) for λ ∈ C.

We have f̄−1(U1) = {[(z1, z2, z)] | (z1, z2) ∈ S3, z ∈ C, z1 6= 0}. A local trivialisation is

given by

Φ1 : U1 × C → f̄−1(U1)

((z1 : z2), z) 7→

[(
1√

1 + |z2|2/|z1|2
,

z2

z1

√
1 + |z2|2/|z1|2

, z

)]

The two sided inverse is given by

Φ−1
1 : [(z1, z2, z)] 7→

(
(z1 : z2),

z1z

|z1|

)
The inverse is well defined since

Φ−1
1 ([(z1λ, z2λ, z)]) =

(
(z1λ : z2λ),

z1λz

|z1λ|

)
=

(
(z1 : z2),

z1λz

|z1|

)
= Φ−1

1 ([(z1, z2, λz)])

Analogously one can find a local trivialisation Φ2 : U2 × C→ f̄−1(U2).
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3.1 Chern classes

Definition 3.8. Let G be a Lie group with Lie algebra g. Let Ik(G) be the vector space of

all symmetric multilinear maps f : gk → R which satisfy f(adga1, ..., adgak) = f(a1, ..., ak)

for all g ∈ G and ai ∈ g.

Now set I(G) :=
⊕∞

k=0 I
k(G). For f ∈ Ik(G) and g ∈ I l(g) we define their product as

fg(a1, ..., ak+l) :=
1

(k + l)!

∑
σ∈Sk+l

f(aσ(1), ...aσ(k))g(aσ(k+1), ..., aσ(k+l)),

where Sk+l is the group of permutations of k + l elements. This turns I(G) into a com-

mutative algebra.

For f ∈ Ik(G) and a 2-form Ω on M define the 2k-form f(Ω) on M as

f(Ω)(X1, ..., X2k) :=
1

(2k)!

∑
σ∈S2k

sgn(σ)f(Ω(Xσ(1), Xσ(2)), ...,Ω(Xσ(2k−1), Xσ(2k))).

Theorem 3.9. (Chern-Weil) Let π : E → M be a principal G-bundle with connection

1-form ω and corresponding curvature 2-form Ω.

i) For every fk ∈ Ik(G) there is a unique closed 2k-form f̄(Ω) on M such that fk(Ω) =

π∗f̄(Ω).

ii) The cohomology class in the de Rham cohomology [f̄(Ω)] ∈ H2k(M) is independent

of the choice of the connection on E.

iii) The map wE : I(G) → H∗(M), f 7→ [f̄(Ω)] is a natural algebra homomorphism, i.e.

if g : F → E is a bundle homomorphism of principal G-bundles, then g∗wE = wF .

For the proof see (Kobayashi and Nomizu; 1969) Chapter 12 or (Greub et al.; 1973)

Chapter 6.

Definition 3.10. Let a1, ..., ar be a basis of g. A map p : g → R is called invariant

polynomial function if p(
∑r

i=1 tiai) is a polynomial in t1, ..., tr and if p(adgv) = p(v) for

all g ∈ G and v ∈ g.

The set P (g) of invariant polynomial functions on g forms an algebra.

Proposition 3.11. Let G be a Lie group with Lie algebra g. The algebra of invari-

ant symmetric multilinear mappings I(G) is isomorphic to the algebra P (g) of invariant

polynomial functions on g.

A proof is given in Kobayashi and Nomizu (1969) Chapter 12. The idea is to consider

the algebra homomorphism φ : I(G)→ P (g) given by (φf)(v) = f(v, ..., v) for f ∈ Ik(G)

and v ∈ g. Through a polarization argument an inverse to φ can be defined.
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Example 3.12. Suppose G < GL(r;C) is a matrix Lie group with Lie algebra g. Then

p(A) := det(I + i
2π
A) is an invariant polynomial. Invariance follows form p(adgA) =

det(I+ i
2π
adgA) = det(g(I+ i

2π
A)g−1) = det(I+ i

2π
A) = p(A) and p is a polynomial since

the determinant is a polynomial in the entries of the matrix it acts on.

Definition 3.13. Let π : E → M be a principal G = GL(r,C)-bundle. We can define

invariant symmetric multilinear maps fk ∈ Ik(G) for 0 ≤ k ≤ r through

det

(
I +

i

2π
A

)
=

r∑
k=0

(φfk)(A)

for A ∈ g. For k > r we let fk = 0. We call ck(E) := wE(fk) the k’th Chern class. For

a complex vector bundle we define the Chern class as the Chern class of the associated

frame bundle. For a principal H-bundle ζ : F →M which can be extended to a principal

G-bundle relative to α : H → G, we define the k’th Chern class as ck(F ) := wF (α∗fk),

where α∗fk(v1, ..., vk) = fk(α∗v1, ..., α∗vk) for all vi in the Lie algebra of H.

Corollary 3.14. The Chern classes ck of a trivial bundle are zero for k > 0.

Proof. This proof is based on Nakahara (2003) Section 11.1. Let π : P →M be a trivial

principal G-bundle. There is a principal bundle isomorphism f from P to the trivial

bundle E = M × G. Let F = {p} × G be the trivial principal G-bundle over {p}.
Let g : E → F be the map given through g(q, g) = (p, g). This is a principal bundle

homomorphism. The space Ωk({p}) of differential forms over {p} is zero for k ≥ 1. Thus

also the Chern classes ck(F ) = 0. By Theorem 3.9 we have ck(P ) = (g ◦ f)∗ck(F ) = 0,

because (g ◦ f)∗ is a ring homomorphism.

Example 3.15. By Proposition 2.19 the Hopf bundle E can be extended to a principal

GL(1,C) = C∗-bundle and hence we can calculate its Chern classes. Let Ω denote the

curvature 2-form on E from Example 2.38. We have det(1 + i
2π
v) = 1 + i

2π
v for v ∈ C =

Lie(C∗). Thus f0 = 1 and f1(v) = i
2π
v and fk(v) = 0 for k > 1. By definition we have

c1(P ) = wP (ι∗f1), where ι∗f1(v) = f1(ι∗v) = f1(v) for v ∈ iR. Moreover, f1(Ω)(v1, v2) =
1
2
(f1(Ω(v1, v2))− f1(Ω(v2, v1)))=f1(Ω(v1, v2)), where we used that Ω(v1, v2) = −Ω(v2, v1).

Let θ ∈ Ω2(CP 1) be the unique 2-form with π∗θ(v1, v2) = f1(Ω)(v1, v2) = i
2π

Ω(v1, v2). We

see that θ = i
2π
F where F is the 2-form calculated in Example 2.43 satisfying π∗F = Ω.

For the Chern classes we thus get that c0(P ) = 1, c1(P ) is the cohomology class of
i

2π
F and for k > 1 we have ck(P ) = 0.

We now want to show that c1(P ) is not trivial. If two elements α, β of Ω2(CP 1) lie in

the same cohomology class, they differ by a boundary, i.e. α − β = dη. Thus by Stokes’

Theorem we have ∫
CP 1

α−
∫

CP 1

β =

∫
CP 1

dη =

∫
∂CP 1

η = 0,
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since CP 1 has empty boundary as it is diffeomorphic to S2. Therefore, to prove that the

first Chern class of the Hopf bundle is not zero it is enough to show∫
CP 1

θ 6= 0.

From Example 2.43 we know that on CP 1 \ {(z : 0)} = U2
∼= C we have F = dz̄∧dz

(1+|z|2)2
.

With z = reiϕ we have dz = eiϕdr + ireiϕdϕ and dz̄ = e−iϕdr − ire−iϕdϕ which gives

dz̄ ∧ dz = 2irdr ∧ dϕ. Since {(z : 0)} is just a point in CP 1 we get

∫
CP 1

θ =
i

2π

∫
U1

F =
i

2π

∞∫
0

2π∫
0

2ir

(1 + |z|2)2
dφdr = −2

∞∫
0

r

(1 + r2)2
dr

s=r2
= −

∞∫
0

1

(1 + s)2
ds =

[
1

1 + s

]s=∞
s=0

= −1.

Since c1(E) is not trivial, the Hopf bundle is not trivial by Corollary 3.14.

3.2 Covariant derivative

Definition 3.16. A covariant derivative on a vector bundle π : E → M is a map

∇ : Γ(TM)× Γ(E)→ Γ(E), (X, Y ) 7→ ∇XY := ∇(X, Y ) with the following properties:

i) C∞(M)-linearity in the first component

ii) Linearity in the second component

iii) Leibnitz rule: For f ∈ C∞(M) ∇XfY = f∇XY +X(f)Y

Now let π : E →M be a principal G-bundle with connection 1-form ω.

Definition 3.17. Let γ : [0, 1]→ M be a curve in M . A curve γ̃ is called horizontal lift

of γ if π ◦ γ̃ = γ and for all t ∈ [0, 1] the tangent vector dγ̃
dt

(t) lies in Hγ̃(t)E.

The following two Theorems are proved in Nakahara (2003) Section 10.4.

Theorem 3.18. Let γ : [0, 1] → M be a curve. For every u ∈ π−1(γ(0)) there exists a

unique horizontal lift γ̃ of γ with γ̃(0) = u.

Theorem 3.19. If γ̃ and γ̃′ are two horizontal lifts of γ, they satisfy γ̃′(0) = γ̃(0)g for

some g ∈ G. Then for all t ∈ [0, 1] also γ̃′(t) = γ̃(t)g.

Let E = P ×ρ V be a vector bundle associated to P .
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Definition 3.20. Let γ : [0, 1] → M be a curve in M . Parallel transport along γ is a

map τγ(t) : π−1
E (γ(0))→ π−1

E (γ(t)) given through

τγ(t)([γ̃(0), v]) = [γ̃(t), v],

where γ̃ is a horizontal lift of γ.

Remark 3.21. The parallel transport is well defined, i.e. it is independent of the

choice of the horizontal lift: If γ̃ and γ̃′ are two horizontal lifts of γ then γ̃′(t) = γ̃(t)g

by Theorem 3.19. Thus if u = [γ̃′(0), v] = [γ̃(0)g, v] = [γ̃(0), ρ(g)v] then τγ(t)(u) =

τγ(t)([γ̃
′(0), v]) = [γ̃′(t), v] = [γ̃(t), ρ(g)v] = τγ(t)([γ̃(0), ρ(g)v]) = τγ(t)(u). Moreover,

parallel transport is a linear isomorphism for every t and hence invertible.

Definition 3.22. Let p ∈ M let X ∈ Γ(TM) and Y ∈ Γ(E) be vector fields and let

γ : [0, 1]→M be an integral curve of Xp such that γ(0) = p. The covariant derivative of

Y with respect to X at the point p is defined as

(∇XY )p = lim
t→0

1

t

(
τ−1
γ(t)Y (γ(t))− Y (γ(0))

)
Theorem 3.23. The covariant derivative from Definition 3.22 satisfies the properties of

a covariant derivative on a vector bundle given in Definition 3.16.

This is proved in Morrison (2000).

4 Principal bundles in physics

4.1 Magnetic monopoles

This section follows some ideas presented in Nakahara (2003) Sections 1.9 and 10.5. For a

magnetic monopole the magnetic field would satisfy ∇· ~B(~x) = 4πgδ3(~x). The solution is
~B = g ~r

r3
. Now we want to calculate the magnetic vector potential such that ~B = ∇× ~A.

There cannot be any global expression for ~A with no singularities since we would get a

contradiction:

4πg =

∫
S2

∇ · ~Bd3x =

∫
S2

∇ · (∇× ~A)d3x = 0.

It is possible, however, to write down local solutions ~A1 and ~A2 on U1 := R3\{(0, 0, z)|z ≤
0} and U2 := R3 \ {(0, 0, z)|z ≥ 0}, respectively. They are given by

~A1 =
g

r(r + z)

−yx
0

 =
g(1− cos θ)

r sin θ
eϕ
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and

~A2 =
g

r(r − z)

 y

−x
0

 = −g(1 + cos θ)

r sin θ
eϕ,

where eϕ = − sinϕex + cosϕey for the unit vectors ex and ey in x and y direction,

respectively. On U1∩U2 we have A1−A2 = ∇(2gϕ). Now consider a particle of massm and

charge e in this field. The time independent Schrödinger equation is 1
2m

(~p− e
c
~A)2ψ(r) =

Eψ(r). Under the change ~A→ ~A+∇Λ the wave function changes as ψ → exp(ieΛ/c~)ψ.

So in our case with Λ = 2gϕ,

ψ1

∣∣∣∣
ϕ=0

= ψ2

∣∣∣∣
ϕ=0

= ψ2

∣∣∣∣
ϕ=2π

= exp(ie2g2π/~c)ψ1

∣∣∣∣
ϕ=2π

= exp(4πge/~c)ψ1

∣∣∣∣
ϕ=0

.

Thus we obtain the condition that 4πge/~c = 2πk for some k ∈ Z.

Now we want to formulate this situation using principal bundles. As base space we

take R3 \ {0} which is homotopy equivalent to S2. We want the local connection forms

to be

A1 = ig̃(1− cos θ)dϕ

A2 = −ig̃(1 + cos θ)dϕ

where g̃ = ge/~c. Up to the factor e/~c these 1-forms correspond to the vector potentials
~A1 and ~A2 since

r sin θdϕ = − sinϕdx+ cosϕdy.

Suppose A1 and A2 are local connection forms of a principal U(1)-bundle over S2 with

transition function t12(r, θ, ϕ) = exp(if(r, θ, ϕ)). The compatibility condition then implies

A2 − A1 = t−1
12 dt12 = i ∂f

∂ϕ
dϕ + i∂f

∂r
dr + i∂f

∂θ
dθ. But on the other hand we have A2 − A1 =

2ig̃dϕ. Hence, t12(r, θ, ϕ) = exp(i2ϕg̃) and thus 4φg̃ = 2πk for some k ∈ Z, which is

exactly the condition we derived from the physical perspective. The principal bundle is

given by E = U1 × U(1)
∐
U2 × U(1)/ ∼, where U1 × U(1) 3 (x, λ) ∼ (x, t21(x)λ) ∈

U2 × U(1). The magnetic potential corresponds to the local curvature of this bundle.

Remark 4.1. The principal U(1)-bundles over S2 can be classified by the homotopy

class of the transition functions, see for example Theorem 2.7 in Cohen (2002). The

construction of the monopole bundles hence produces all possible principal U(1)-bundles

over S2 up to isomorphism. For g̃ = 1/2 the principal bundle E is exactly the Hopf

bundle, see Example 2.34. For g̃ = 0 this gives the trivial bundle.

4.2 Electromagnetism

Electromagnetism allows for a formulation in terms of principal bundles. We take the

Minkowski space-time R4 as basespace and consider a U(1)-bundle E over it. Since R4
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is contractible, the bundle is trivial E = R4 × U(1). A local connection form A is just a

iR-valued 1-form on R4:

A =
∑
µ

Aµdxµ

The local curvature is then given by

F = dA =
1

2

∑
µ,ν

(
∂Aµ
∂xν
− ∂Aν
∂xµ

)
dxν ∧ dxµ =

1

2

∑
µ,ν

Fµνdx
µ ∧ dxν ,

where Fµν = ∂Aν
∂xµ
− ∂Aµ

∂xν
. We know that dF = d2A = 0. Let us name the components of

Fµν in the following way:

Fµν = i


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


Then the equation dF = 0 implies the two vacuum Maxwell equations

∇× ~E +
∂ ~B

∂t
= 0 and ∇ · ~B = 0.

So thinking of the magnetic and the electric field as components of the curvature gives us

two of the four vacuum Maxwell equations for free. One can derive the other two from

minimizing the Maxwell action

S(A) =
1

4

∫
R4

FµνF
µνd4x,

see for example Nakahara (2003) Section 10.5.

4.3 Berry connection

In quantum mechanics one is interested in eigenstates of Hamiltonians. Multiplying a

state with an element of U(1) does not change the physical meaning. This gives us the

motivation to study the following construction.

Proposition 4.2. Let M be a smooth manifold and H a complex Hermitian (or real sym-

metric) n× n matrix depending smoothly on the parameter p ∈M . Since the eigenvalues

of H(p) are real they can be ordered. Assume that for some open subset U of M for every

p ∈ U the eigenspace to the kth eigenvalue of H(p) is one dimensional. Then one can

define a principal U(1)-bundle (or an S0-bundle) consisting of normalised eigenvectors to

the kth eigenvalue of H(p) for all p ∈ U .
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We call this bundle a normalised eigenbundle or NE-bundle.

Proof. Let us denote the eigenvalues of H(p) by λj(p) for j ∈ {1, ..., n}. The coefficients

of the characteristic polynomial χp of H(p) depend smoothly on p ∈ M . Since λk(p)

is a simple root of this polynomial, it is smooth by the implicit function theorem. The

rational function fp(x) = χp(x)/(x− λk(p)) depends smoothly on p. Since χp(λk(p)) = 0,

the rational function fp(x) has no pole and is holomorphic. Moreover, we can write

fp(x) =
∏

j 6=k (x− λj(p)). Note that χ′p(λk) =
∏

j 6=k (λk(p)− λj(p)). Following an idea in

Schwinger (2001) Chapter 1.7, for p ∈ U we define the matrix

P (p) =
fp(H(p))

χ′p(λk(p))
=
∏
j 6=k

H(p)− Iλj(p)
λk(p)− λj(p)

,

where I is the unit matrix of size n. Note that the different factors commute, so this

product is well defined. This matrix P (p) depends smoothly on p ∈ U by our considera-

tions above. Let Ep be the eigenspace to the eigenvalue λk at p ∈ U . Applying P (p) to

eigenvectors vj of H(p), we see that P (p)vk = vk and P (p)vj = 0 for j 6= k. Since the

eigenvectors form a basis of V = Cn (or Rn in the real case) we see that the matrix P (p)

acts as a projection onto Ep.

Now let s ∈ U and pick an eigenvector v ∈ Es. Then ‖P (s)v‖ = ‖v‖ > 0 and since

‖P (p)v‖ is a continuous function of p, there is an open neighbourhood O ⊂ U of s, such

that P (p)v 6= 0 for all p ∈ O. Now pick a p ∈ O. Since Es and Ep are one dimensional,

and P (p)
∣∣
Es

: Es → Ep is a non-zero linear map, it is actually an isomorphism. We

therefore obtain an isomorphism

O × Es →
∐
p∈O

Ep, (p, v) 7→ P (p)v.

This is a local trivialisation of E :=
∐

p∈U Ep. Since s ∈ U was arbitrary, we can find local

trivialisations on all of U and thus E is a vector bundle. Now as described in Section 3

we can consider the unitary (or orthonormal) frame bundle associated to E. This gives

us exactly the NE-bundle.

Let π : E → M be a NE-bundle for some complex Hermitian matrix. For any local

section σ : U → E we can define the 1-form A(p) = σ(p)†dσ(p) (see Nakahara (2003)

Section 10.6).

Proposition 4.3. Let {Ui} be an open cover of M together with local sections σi : Ui → E

and let Ai(p) = σi(p)
†dσi(p).

i) There exists a connection 1-form ω such that σ∗i ω = Ai, i.e. the 1-forms Ai are local

connection 1-forms.
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ii) The connection ω is independent of the choice of the cover {Ui} and the connections

σi.

The connection ω is called Berry connection.

Proof. Let σ : U → E be any local section of the NE-bundle (not necessarily equal to any

σi). We have 0 = d(σ(p)†σ(p)) = (dσ(p))†σ(p) + σ(p)†dσ(p) = Ā(p) +A(p). Thus A is an

iR-valued 1-form. Let τ : V → E be another local section (not necessarily equal to any

σi) and B(p) = τ(p)†dτ(p). For p ∈ U ∩V we can write τ(p) = σ(p)t(p) for the transition

function t. Then B(p) = τ(p)†dτ(p) = t̄(p)σ(p)†(dσ(p))t(p)+ t̄(p)σ(p)†σ(p)dt(p) = A(p)+

t−1(p)dt(p).

Applying this to σ = σi and τ = σj shows that the assumptions of Theorem 2.33ii)

are satisfied. Hence, there exists a connection 1-form ω such that σ∗i ω = Ai. Moreover,

on Ui we have ω = ωi where ωi is defined in Theorem 2.33.

To prove ii) consider another cover {Vα} of the NE-bundle with sections τα from which

we obtain the connection 1-form ω̃ using Theorem 2.33ii). Applying our calculation above

to σ = σi and τ = τα for any i and α shows that the assumptions of Theorem 2.33i) are

satisfied. Thus ωi = ω̃α on π−1(Ui ∩ Vα) for all α and i. Hence, the 1-forms ω and ω̃

actually agree on E.

4.4 Eigenbundles for Hamiltonians

Lemma 4.4. Let H(p) be a complex Hermitian n × n matrix depending smoothly on

p ∈ R3. Assume that at p = 0 two eigenvalues λ1(p) and λ2(p) are equal, and that there is

an open neighbourhood V of 0 such that all the eigenvalues are pairwise distinct on V \{0}.
There exists a unitary matrix u(p) depending continuously on p such that u(p)†H(p)u(p)

has block form H2(p) ⊕ Hn−2(p) where Hn−2(p) is diagonal and H2(p) is a 2 × 2 matrix

with eigenvalues λ1 and λ2 and the NE-bundles of H for λ1 and λ2 are isomorphic to the

NE-bundles of H2.

Proof. Note that the eigenvalues of H(p) are real. Choose an open ball U such that

Ū ⊂ V with centre 0. We can assume without loss of generality that λ1(p) > λ2(p) for

all p ∈ U \ {0}. Let λj(p) denote the eigenvalues of H(p). Set B1 = R3 \ {(0, 0, z)|z ≤ 0}
and B2 = R3 \ {(0, 0, z)|z ≥ 0}. Consider the NE-bundles Ej for the eigenvalues λj. For

j < 3 this is a principal U(1)-bundle over U \ {0}, for j ≥ 3 the bundle Ej is actually

well defined on all of U . Since U is contractible Ej is trivial for j ≥ 3 and hence admits

a global section sj : U → Ej. For j = 1 we cover U \ {0} with U1 = U ∩ B1 and

U2 = U ∩B2. We choose local sections s1
α : Uα → E1. The transition function t1αβ is given

through s1
β(p) = s1

α(p)t1αβ(p) for all p ∈ Uα ∩ Uβ. For j = 2, pick any section s̃α of E2 on

Uα. Now define a new section through s2
α = s̃α det(s1

α, s̃α, s
3, ..., sn)−1. Then the matrix
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Aα = (s1
α, s

2
α, s

3, ..., sn) is a unitary matrix with determinant one. For p ∈ Uα ∩ Uβ the

transition function is given through s2
β(p) = s2

α(p)t2αβ(p) . For p ∈ Uα ∩ Uβ we have

1 = detAα = det(s1
α, s

2
α, s

3, ..., sn) = det(s1
βt

1
βα(p), s2

βt
2
βα(p), s3, ..., sn)

= t1βα(p)t2βα(p) detAβ = t1βα(p)t2βα(p) (3)

Now let θ denote the azimutal angle of p. Consider the following vector fields

c̃1(p) =
1 + cos θ

2
s1

1(p) +
1− cos θ

2
s2

2(p)

c̃2(p) = −1− cos θ

2
s1

2(p) +
1 + cos θ

2
s2

1(p)

Both are well defined on U \{0} because wherever a section is not well defined its prefactor

vanishes. These vector fields are orthogonal, since by Equation 3

〈c̃1(p), c̃2(p)〉 =
1− cos2 θ

4
(−t112(p) + t221(p)) = 0.

We normalise them

ci(p) =
c̃i(p)√
2−sin2 θ

2

to get an orthonormal frame u(p) = (c1(p), c2(p), s3(p), ..., sn(p)) defined on U \ {0}. In

this basis the Hamiltonian becomes diagonal apart form a 2× 2 block H2 which is given

by

H2(p) =
1

4− 2 sin2 θ

(
λ1(p)(1 + cos θ)2 + λ2(p)(1− cos θ)2 (1− cos2 θ)t112(p)(λ2(p)− λ1(p))

(1− cos2 θ)t̄112(p)(λ2(p)− λ1(p)) λ1(p)(1− cos θ)2 + λ2(p)(1 + cos θ)2

)

The NE-bundles for H2 are isomorphic to the bundles E1 and E2. This can be seen

for example by comparing H2 to the matrix in Section 5.2. Let b, c, d and v1 be as in

Section 5.2. One gets

b+ ic =
1− cos2 θ

2(1 + cos2 θ)
t̄112(p)(λ2(p)− λ1(p))

and

d =
cos θ

1 + cos2 θ
(λ1(p)− λ2(p)).

The condition b = c = 0 is equivalent to θ ∈ {0, π}. Moreover, we have d > 0 for θ = 0

and d < 0 for θ = π. So for the larger eigenvalue λ1 the local section obtained from v1

by plugging in the above expressions for b, c and d is defined on U1 (this is the U1 from

this Section), and the other local section is indeed defined on U2. The transition function
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b−ic
b2+c2

gives exactly t112(p). So both the NE-bundle of H2 for λ1 and E1 have the same

open cover and the same transition functions, hence they are isomorphic by Remark 2.12.

The NE-bundle for λ2 and E2 are isomorphic as well, since they have again the same

open cover with identical transition functions (which are just the inverse of the transition

functions for λ1 by Equation (3)).

5 Hopf bundles via 2× 2 matrices

In this Section we consider symmetric or Hermitian 2× 2 matrices with real, complex or

quaternionic entries. We study how the normalised eigenvectors depend on the entries and

view them as a principal bundle. It turns out that this gives a construction for different

Hopf bundles.

5.1 Real matrices

Analogously to the complex Hopf bundle, the map h : S1 → S1, (x1, x2) 7→ (2x1x2, x
2
1−x2

2)

induces a principal S0-bundle. We call this bundle the Hopf bundle S0 ↪→ S1 → S1. Since

the total space S1 is connected and S0 and S1×S0 are not, this Hopf bundle is non-trivial.

One can show (see Theorem 2.7 in Cohen (2002)) that up to isomorphism there are only

two principal S0-bundles over S1. This means that there is only the trivial bundle and

this Hopf bundle.

Every symmetric real 2× 2 matrix can be written as

A(a, b, c) =

(
a+ c b

b a− c

)

for some a, b, c ∈ R. Its eigenvalues are then given by λ± = a ±
√
c2 + b2. Let U1 :=

R2 \ {(0, c)|c ≤ 0} and U2 := R2 \ {(0, c)|c ≥ 0}. For (a, b, c) ∈ R× U1 the vector

v1(a, b, c) =

(
c+
√
b2 + c2

b

)
1√

2(b2 + c2) + 2c
√
c2 + b2

is a normalised eigenvector of A(a, b, c) to the eigenvalue λ+(a, b, c). Note that the ex-

pression is not well defined for b = 0 and c < 0. However, there is another expression

which is well defined in this case. For (a, b, c) ∈ R× U2 the vector

v2(a, b, c) =

(
b

−c+
√
b2 + c2

)
1√

2(b2 + c2)− 2c
√
c2 + b2

is a normalised eigenvector of A(a, b, c) to the eigenvalue λ+(a, b, c). Notice that v1 and
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v2 are independent of the parameter a and invariant under scaling (b, c) 7→ (rb, rc) for

r ∈ R>0. The normalised eigenbundle thus is of the form π : R×R>0×E → R×R>0×S1,

where E is a principal S0-bundle over S1.

We focus on E and view v1 and v2 as maps depending only on b and c. The maps v1

and v2 define local sections of E over S1. The transition functions tij such that vitij = vj

take values in {±1} and are defined on R2 \ {(0, c)|c ∈ R} which has two connected

components. We see that t12(b, c) = 1 for b > 0 and t12(b, c) = −1 for b < 0. Thus this

bundle has a connected total space and hence is non-trivial. Hence it is isomorphic to the

Hopf bundle S0 ↪→ S1 → S1.

5.2 Complex matrices

All complex Hermitian 2× 2 matrices can be expressed as

A(a, b, c, d) =

(
a+ d b− ic
b+ ic a− d

)

for some a, b, c, d ∈ R. The eigenvalues are λ± = a ±
√
d2 + b2 + c2. Again we will

concentrate on λ+ and define U1 := R3 \ {(0, 0, d)|d ≤ 0} and U2 := R3 \ {(0, 0, d)|d ≥ 0}.
As before, the eigenvectors are independent of the parameter a. We have

v1(b, c, d) =

(
d+
√
b2 + c2 + d2

b+ ic

)
1√

2(b2 + c2 + d2) + 2d
√
d2 + b2 + c2

and

v2(b, c, d) =

(
b− ic

−d+
√
b2 + c2 + d2

)
1√

2(b2 + c2 + d2)− 2d
√
b2 + c2 + d2

on U1 and U2 respectively. The maps v1 and v2 are local sections of a U(1)-bundle over

S2. The transition function is t12 = b−ic
b2+c2

.

Now we can calculate the Berry connection. Switching to spherical coordinatesbc
d

 = r

cosϕ sin θ

sinϕ sin θ

cos θ


we obtain

v1(ϕ, θ) =
1√
2

( √
1 + cos θ

eiϕ
√

1− cos θ

)
and

v2(ϕ, θ) =
1√
2

(
e−iϕ
√

1 + cos θ
√

1− cos θ

)
.
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Hence for the Berry connection we have A1 = v†1dv1 = i
2
(1 − cos θ)dϕ and A2 = − i

2
(1 +

cos θ)dϕ. By the calculation in Section 4.1, the local connection forms A1 and A2 fix

the homotopy class of the transition function. By Remark 4.1, the principal bundle we

obtained is exactly the same as the Hopf bundle S1 ↪→ S3 → S2.

5.3 Quaternionic matrices

The skew field of quaternions is given by H = {a + bi + cj + dk | a, b, c, d ∈ R} where

i2 = j2 = k2 = −1 and ij = k, jk = i and ki = j. For q = a + bi + cj + dk the complex

conjugate is given by q̄ = a− bi− cj − dk. Note that |q|2 = qq̄ = q̄q = a2 + b2 + c2 + d2.

Definition 5.1. Suppose A is an n× n matrix with quaternionic entries. We call q ∈ H
a right eigenvalue of A if there is a nonzero vector v ∈ Hn such that Av = vq.

Definition 5.2. We call a quaternionic matrix A Hermitian if A† = A, where † denotes

the transpose complex conjugate as in the complex case.

Proposition 5.3. If A is Hermitian and λ is a right eigenvalue of A, then λ is real.

Proof. Let Av = vλ. We have (Av)†v = v†Av = v†vλ and (Av)†v = λ̄v†v. Since v†v is

real and non-zero, we obtain λ = λ̄.

Any quaternionic Hermitian 2× 2 matrix can be written as

A(a, b, c, d, e, f) =

(
e+ f a+ ib+ jc+ kd

a− ib− jc− kd e− f

)

for some a, b, c, d, e, f ∈ R. The eigenvalues are λ± = e ±
√
a2 + b2 + c2 + d2 + f 2.

Let us call l =
√
a2 + b2 + c2 + d2 + f 2. Again we will consider λ+. Let U1 := R5 \

{(0, 0, 0, 0, f)|f ≤ 0} and U2 := R5 \ {(0, 0, 0, 0, f)|f ≥ 0}. We find the following expres-

sions for eigenvectors on U1 and U2, respectively:

v1(a, b, c, d, f) =

(
f + l

a− ib− jc− kd

)
1√

2l2 + 2fl

and

v2(a, b, c, d, f) =

(
a+ ib+ jc+ kd

−f + l

)
1√

2l2 − 2fl

We now compare this to the Hopf bundle S3 ↪→ S7 → S4 which can be constructed the

following way. Identify R8 with H2 and view S7 as a subset of H2. Consider the manifold

HP 1 which is the quotient of H2 \ {(0, 0)} by the equivalence relation (q1λ, q2λ) ∼ (q1, q2)

for all λ ∈ H \ {0}. Let g : S7 → HP 1 be the quotient map. We identify R5 with H× R
through (x1, x2, x3, x4, x5) 7→ (x1 +x2i+x3j+x4k, x5). Thus we can view S4 as a subset of
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H×R. Let ψ : HP 1 → S4 be the diffeomorphism [(q1, q2)] 7→ (2q1q̄2, |q1|2− |q2|2)/(|q2|2 +

|q1|2). The Hopf map is given through h = ψ ◦ g : S7 → S4.

Let U(H) denote the unit quaternions. Note that U(H) ∼= S3.

Proposition 5.4. There is a principal U(H)-bundle with the Hopf map h : S7 → S4 as

projection. We call it the quaternionic Hopf bundle.

Proof. A smooth right U(H)-action on S7 is given through (q1, q2) · λ = (q1λ, q2λ) for all

λ ∈ U(H) and (q1, q2) ∈ S7. For every p ∈ S4 the fibre h−1(p) is of the form {(q1, q2)λ | λ ∈
U(H)} for any (q1, q2) ∈ S7 with h(q1, q2) = p. The right U(H)-action thus preserves the

fibres and is free and transitive on each fibre. One calculates that h ◦ vi = id
∣∣
Ui∩S4 for

i = 1, 2. Hence we can define local trivialisations φi : (Ui ∩ S4) × U(H) → h−1(Ui ∩
S4), (p, λ) 7→ vi(p)λ. These local trivialisations are compatible with the right action.

As we did in Section 2 for the Hopf bundle S1 ↪→ S3 → S2 we now want to calculate a

connection and the corresponding curvature for the quaternionic Hopf bundle S3 ↪→ S7 →
S4 and show that the bundle is non-trivial. The Lie algebra of U(H) is given through

the algebra of imaginary quaternions where the Lie bracket is the commutator. For the

generators we thus have [i, j] = 2k, [j, k] = 2i and [k, i] = 2j. For v = ai + bj + ck and

u = (q1, q2) = (x1 + x2i + x3j + x4k, y1 + y2i + y3j + y4k) ∈ S7 the fundamental vector

field can be calculated to be

ξu(v) =

(
−x2a− x3b− x4c+ i(x1a− x4b+ x3c) + j(x1b− x2c+ x4a) + k(x1c+ x2b− x3a)

−y2a− y3b− y4c+ i(y1a− y4b+ y3c) + j(y1b− y2c+ y4a) + k(y1c+ y2b− y3a)

)

Now we want to find a connection on the quaternionic Hopf bundle. Recall that a con-

nection is a projection onto the vertical subspace. The vertical subspace at u ∈ S7 is

generated by the three orthonormal vectors ξu(i), ξu(j) and ξu(k). The vector fields ξ(i),

ξ(j) and ξ(k) define a frame and the dual of this frame consists of 1-forms ωi, ωj and ωk

on S7 that can be combined to give the projection we want. So the connection form will

look like ω = µiωi + µjωj + µkωk. Since ω(ξ(i)) = i, the factor µi has to be equal to i.

Analogously, µj = j and µk = k. This leads to the following expression:

Proposition 5.5. A connection on the quaternionic Hopf bundle is given by

ω =(−x2i− x3j − x4k)dx1 + (x1i− x4j + x3k)dx2

+ (x4i+ x1j − x2k)dx3 + (−x3i+ x2j + x1k)dx4

+ the same with y instead of x

=q̄1dq1 + q̄2dq2
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Proof. Expanding gives

q̄1dq1 + q̄2dq2 = ω +
4∑
i=1

xidxi + yidyi.

Since
∑4

i=1 x
2
i + y2

i = 1 we have 0 = 2
∑4

i=1 xidxi + yidyi which implies q̄1dq1 + q̄2dq2 =

ω. To show that ω is a connection, we calculate ωu(ξu(ai + bj + ck)) = (ia + jb +

kc)(
∑4

i=1 x
2
i + y2

i ) = ai + bj + ck. The second property of a connection follows from

Adg−1ωq(v) = g−1ωqg(v) =
∑2

l=1 g
−1(q̄ldql(v))g =

∑2
l=1 (qlg)d(qlg)(Rg∗(v)) = R∗gωqg.

Now we want to calculate a local connection form on V2 := H ∼= {[(q, 1)]|q ∈ H} ⊂
HP 1. We pick the section s : V2 → S7,

s(q) =
(q, 1)√
1 + qq̄

.

Then we have

A1 =
q̄√

1 + qq̄
d

(
q√

1 + qq̄

)
+

1√
1 + qq̄

d

(
1√

1 + qq̄

)
One calculates

d

(
q√

1 + qq̄

)
= −q

2

(dq)q̄ + qdq̄

(1 + qq̄)3/2
+

dq√
1 + qq̄

and

d

(
1√

1 + qq̄

)
= −1

2

(dq)q̄ + qdq̄

(1 + qq̄)3/2
.

Plugging this in we get

A1 =
q̄dq

1 + qq̄
−
(

1 + q̄q

2

)
(dq)q̄ + qdq̄

(1 + qq̄)2

=
2q̄dq − (dq)q̄ − qdq̄

2(1 + qq̄)
.

Observe that qq̄ = q̄q implies (dq)q̄ + qdq̄ = (dq̄)q + q̄dq. Hence we have

A1 =
q̄dq − (dq̄)q

2(1 + qq̄)
= Im

(
q̄dq

(1 + qq̄)

)
.

The curvature is given by

F = A1 +
1

2
A1 ∧ A1 =

1

(1 + |q|2)2
dq̄ ∧ dq,

as shown in Naber (1997) on p. 288.

We can look at the quaternionic Hopf bundle as an su(2)-bundle by identifying i, j, k
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with the Pauli matrices I =

(
i 0

0 i

)
, J =

(
0 1

−1 0

)
, K =

(
0 i

i 0

)
. With q = x1 + x2I +

x3J + x4K and |q|2 = x2
1 + x2

2 + x2
3 + x2

4 the curvature then takes the form

F =
2

(1 + |q|2)2
((dx1 ∧ dx2 − dx3 ∧ dx4)I + (dx1 ∧ dx3 + dx2 ∧ dx4)J

+(dx1 ∧ dx4 − dx2 ∧ dx3)K)

As shown for example in Nakahara (2003) Section 11.2, the second Chern class is given

by

c2(F ) =
1

2

(
i

2π

)2

(trF ∧ trF − tr(F ∧ F )) ,

where the trace and the wedge product are defined as follows. For pure tensors a⊗ η and

b ⊗ ω ∈ g ⊗ Ω(M) let tr(a ⊗ η) = tr(a) ⊗ η and (a ⊗ η) ∧ (b ⊗ ω) = ab ⊗ (η ∧ ω). Then

extend these definitions by linearity to all of g⊗ Ω(M).

Since the Pauli matrices have trace zero we get trF = 0 and hence also trF ∧ trF = 0.

We calculate

F ∧ F =
4

(1 + |q|2)4
dx1 ∧ dx2 ∧ dx3 ∧ dx4(−I2 − I2 − J2 − J2 −K2 −K2)

=
24

(1 + |q|2)4
dx1 ∧ dx2 ∧ dx3 ∧ dx4

(
1 0

0 1

)

Thus, tr(F ∧ F ) = 48
(1+|q|2)4

dx1 ∧ dx2 ∧ dx3 ∧ dx4. Now following the calculations in

Naber (1997) on p. 320 we have∫
HP 1

c2(F ) =
6

π2

∫
R4

1

(1 + |q|2)4
dx1 ∧ dx2 ∧ dx3 ∧ dx4

We introduce spherical coordinates

x1 = r sinχ sinϕ cos θ, x2 = r sinχ sinϕ sin θ, x3 = r sinχ cosϕ, x4 = r cosχ,
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where r ∈ [0,∞), θ ∈ [0, 2π] and χ, ϕ ∈ [0, π]. We then have

∫
HP 1

c2(F ) =
6

π2

2π∫
0

π∫
0

π∫
0

∞∫
0

r3 sin2 χ sinϕ

(1 + r2)4
drdχdϕdθ

=
12

π

 π∫
0

π∫
0

sin2 χ sinϕdχdϕ

 ∞∫
0

r3

(1 + r2)4
dr


=

12

π

(
2
π

2

)2

6

∞∫
0

r

(1 + r2)3
dr


= 4

[
−1

4

1

(1 + r2)2

]r=∞
r=0

= 1

Thus the bundle is not trivial.
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