Assignment 9

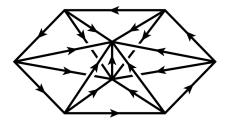
- 1. [Y] Sec. 3.3 #2.
- 2. [Y] Sec. 3.4 #2.
- 3. Show that the map $\mathbb{E}^3 \to \mathbb{E}^4$ given by $(x, y, z) \mapsto (xy, xz, y^2z^2, 2yz)$ induces an embedding of the projective plane \mathbb{RP}^2 into \mathbb{E}^4 .

Analogous to the projective plane, the 3-dimensional real projective space \mathbb{RP}^3 can be obtained by identifying antipodal points of the 3-sphere S^3 , or by identifying antipodal points on the boundary S^2 of the solid 3-ball D^3 , or by equipping the set of 1-dimensional subspaces of \mathbb{R}^4 with a suitable topology.

4. This last description gives \mathbb{RP}^3 the structure of a 3-manifold as follows. Each point of \mathbb{RP}^3 has a homogeneous coordinate $(x_0: x_1: x_2: x_3)$, i.e., the points (x_0, x_1, x_2, x_3) and $(\lambda x_0, \lambda x_1, \lambda x_2, \lambda x_3)$ of $\mathbb{R}^4 - \{(0, 0, 0, 0)\}$ are identified as the same point in \mathbb{RP}^3 for any nonzero real number λ . Based on this, specify the local charts that cover \mathbb{RP}^3 , each of which is homeomorphic to \mathbb{E}^3 , and write down the transition functions on their pairwise overlaps.

In the following, let us give two more descriptions for \mathbb{RP}^3 , first as a *lens space* (introduced by Tietze) with the structure of a simplicial complex (see, e.g., Section 3.2 of the reference [B]), second as a quotient space obtained by a *Dehn surgery*.¹

5. Construct a 3-dimensional simplicial complex from n tetrahedra (i.e., 3-simplices) T_1, \ldots, T_n by the following two steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that each T_i shares a common vertical face with its two neighbors T_{i-1} and T_{i+1} , subscripts being taken mod n. Then identify the bottom face of T_i with the top face of T_{i+1} for each i.



This simplicial complex, or its polytope (geometric realization), is an example of a lens space, denoted by L(n, 1).

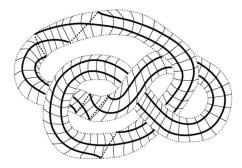
- (a) Show that L(2,1) is homeomorphic to \mathbb{RP}^3 .
- (b) Calculate the Euler characteristic of \mathbb{RP}^3 by carefully enumerating the simplices of L(2,1).

 $^{^{1}}$ The figures are copied from Allen Hatcher's Algebraic topology and John Luecke's Dehn surgery on knots in the 3-sphere. The descriptions below are adapted in addition from Joshua Evan Greene's Heegaard Floer homology.

6. More generally, viewing $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\}$ and given positive integers p, q with (p, q) = 1, we can construct the lens space L(p, q) from the periodic homeomorphism $f: S^3 \to S^3, (z_1, z_2) \mapsto (e^{2\pi i/p} z_1, e^{2\pi i q/p} z_2)$ as the quotient space S^3/\sim_f , where $x \sim_f x'$ if and only if the k-fold composite $f^k(x) = x'$ for some k.

Show that this construction of L(p,1) gives the same space as Question 5.²

In 1910, Dehn devised a general method called *surgery* for constructing 3-manifolds, which can also be carried out in two steps as follows. Dehn's construction begins with a knot $K \subset S^3$, i.e., an embedded $S^1 \hookrightarrow S^3$. A closed tubular neighborhood of K is homeomorphic to a solid torus $S^1 \times D^2$. First we excise its interior from S^3 to produce the knot exterior X_K , a compact manifold with torus boundary. We then obtain a 3-manifold by regluing a solid torus $S^1 \times D^2$ to X_K along their boundaries, in such a way that a curve $\{\theta\} \times \partial D^2$ (i.e., a line of longitude) glues to a curve that wraps p times longitudinally and q times meridionally around K.



The homeomorphism type of the result depends only on K and the slope p/q, and we denote it K(p/q).

7. Let $K = \bigcirc$ be the unknot. Show that $\bigcirc(p/1) \cong L(p,1)$ and so Dehn's surgery gives yet another way of constructing \mathbb{RP}^3 , when p = 2.

²To visualize S^3 from D^3 , consider the analogue of S^2 as obtained from D^2 by folding a dumpling, i.e., by identifying pairs of points on the boundary $\partial D^2 = S^1$ that are symmetric along a diameter D^1 . It is also helpful to think of S^3 as the union of a pair of linked solid tori, by drilling off a solid cylinder through the north and south poles of D^3 .