Supplementary reading, III.: Function space, the compart-open topology, and homotopy of maps Let X be a set and (Y, d) be a metric space. Write Y X := the set of functions from X to Y (of notation 2 x of the power set and X I of the product of copies of X indexed by I) Define the uniform metric on Y corresponding to d by P(f,g) = sup {] (f(x),g(x)) | x e X } for any f, y: X -> Y, where d(a, b) = min fd(a, b), 1} is the standard bounded metric associated to d. closed closed X, P) continuous bounded X compart Recall that a topology I can be specified by a <u>subbasis</u> S so that it basin B consists of all finite intersections obelements of S, and J consists of all arbitrary unions of elements of B. Def (compart-open topology) Let X and Y he topological spaces (Y not necessarily metrizable). Given CCX and UCY, write $S(c, u) = \{f \in e(X, Y) | f(c) = u\}$ Subbasis Define the compact-open topology on C(X, Y) to be by the subbasis (check!) consisting of sets of the form S(C,U).

The Suppose X, Y, Z are compartly generated and
weakly Hausdorff (any continuous function into X
sends a compart Hausdorff space onto a closed
subspace of X). Then there is a homeomorphism
$$C(X \times Y, Z) \cong C(X, C(Y, Z)).$$

and conversely any continuous function
$$G: X \rightarrow C(Y, Z)$$
 induces a
continuous function $g: X \times Y \rightarrow Z$
 $(X, Y) \mapsto G(X)(Y)$
The Suppose X, Y, Z are compactly generated and
weakly Houndorff (any continuous function into X
sends a compact Hausdorff space onto a closed
subspace of X). Then there is a homeomorphism
 $C(X \times Y, Z) \cong C(X, C(Y, Z))$.
(The subcotegory of CGWH spaces is Controion closed.
Compare Hom_R (M & N, P) \cong Hom_R (M, Hom_R(N, P)).
Compare Hom_R (M & N, P) \cong Hom_R (M, Hom_R(N, P)).
EX/Deb homotopy between continuous maps as a path
in the space of continuous maps.
Given $p: I \longrightarrow C(X, Y)$ with $p(o) = f$ and $p(i) = g$,
 $p \in C(I, C(X \times Y)) \cong C(I \times X, Y) \cong C(X \times I, Y)$

Given
$$p: I \longrightarrow \mathcal{C}(X, Y)$$
 with $p(o) = f$ and $p(i) = g$,
 $p \in \mathcal{C}(I, \mathcal{C}(X \times Y)) \cong \mathcal{C}(I \times X, Y) \cong \mathcal{C}(X \times I, Y)$
 $p \longmapsto H$

Given continuous maps f.g: X -> Y, if there exists

a continuous map
$$H: X \times I \longrightarrow Y$$
 such that $H|_{X \times \{0\}} = f$
 $H|_{X \times \{1\}} = 9$, we then say that $H|_{X \times \{1\}} = f(x, 0) = f(x), \forall x \in X$
 $H|_{X \times \{1\}} = 9$, we then say that $H|_{X \times \{1\}} = f(x), \forall x \in X$
 $f \text{ and } 9 \text{ ave hemotopic}, \text{ clenated } f \simeq 9, \text{ and}$
call H a homotopy from f to 9 .
 F_{3}/F_{1}
 $X \longrightarrow F_{3}$
 F_{3}/F_{1}
 F_{3}/F_{3}
 $F_{3}/F_{3}/F_{3}$
 F_{3}/F_{3}
 $F_{3}/F_{3}/F_{3}$
 $F_{3}/F_{3}/F_{3}$
 $F_{3}/F_{3}/F_{3}$
 $F_{3}/F_{3}/F_{3}/F_{3}$
 $F_{3}/F_{3}/F_{3}/F_{3}/F_{3}/F_{3}/F_{3}/F_{3}/$