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Exercises

Analogous to the projective plane, the 3-dimensional real projective space RP 3 can be obtained
by identifying antipodal points of the 3-sphere S3, or by identifying antipodal points on the boundary
S2 of the solid 3-ball D3, or by equipping the set of 1-dimensional subspaces of R4 with a suitable
topology.

1. This last description gives RP 3 the structure of a 3-manifold as follows. Each point of RP 3 has a
homogeneous coordinate (x0 : x1 : x2 : x3), i.e., the points (x0, x1, x2, x3) and (�x0,�x1,�x2,�x3)
of R4 � {(0, 0, 0, 0)} are identified as the same point in RP 3 for any nonzero real number �.

Based on this, specify the local charts that cover RP 3, each of which is homeomorphic to E3,
and write down the transition functions on their pairwise overlaps.

In the following, let us give two more descriptions for RP 3, first as a lens space (introduced by Tietze)
with the structure of a simplicial complex, second as a quotient space obtained by a Dehn surgery.1

2. Construct a 3-dimensional simplicial complex from n tetrahedra (i.e., 3-simplices) T1, . . . , Tn by
the following two steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that
each Ti shares a common vertical face with its two neighbors Ti�1 and Ti+1, subscripts being
taken mod n. Then identify the bottom face of Ti with the top face of Ti+1 for each i.

This simplicial complex, or its polytope (geometric realization), is an example of a lens space,
denoted by L(n, 1).

(a) Show that L(2, 1) is homeomorphic to RP 3.

(b) Calculate the Euler characteristic of RP 3 by carefully enumerating the simplices of L(2, 1).

3. More generally, viewing S3 = {(z1, z2) 2 C2 : |z1|2 + |z2|2 = 1} and given positive integers
p, q with (p, q) = 1, we can construct the lens space L(p, q) from the periodic homeomorphism
f : S3 ! S3, (z1, z2) 7! (e2⇡i/pz1, e2⇡iq/pz2) as the quotient space S3/ ⇠f , where x ⇠f x0 if and
only if the k-fold composite fk(x) = x0 for some k.

Show that this construction of L(p, 1) gives the same space as in Question 2.2

1
The figures are copied from Allen Hatcher’s Algebraic topology and John Luecke’s Dehn surgery on knots in the

3-sphere. The descriptions below are adapted in addition from Joshua Evan Greene’s Heegaard Floer homology.
2
To visualize S3

from D3
, consider the analogue of S2

as obtained from D2
by folding a dumpling, i.e., by identifying

pairs of points on the boundary @D2
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that are symmetric along a diameter D1
. It is also helpful to think of S3

as

the union of a pair of linked solid tori, by drilling o↵ a solid cylinder through the north and south poles of D3
.
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