

(d) Let (X, τ) be a compact topological space. Then every compact subset of X is closed.

We need a space that is not T2. Again, let X = {x, y} with the trivial topology. It is compact because it is finite. The set {x} is compact but not closed. 2. (20 points) Let X be a topological space and let $X\times X$ be the product space. The set

$$\Delta = \{(x, x) \mid x \in X\} \subset X \times X$$

is called the diagonal of $X \times X$. Prove that X is Hausdorff if and only if the diagonal Δ is a closed subset of $X \times X$.

"=>": It suffices to show that
$$X \times X - \Delta$$
 is
open. Let $(X, Y) \in X \times X - \Delta$ so that
 $x \neq Y$. Since X is Hausdorff, there
exist appen subsets U and V such
that $U \ni x$, $V \ni Y$, and $U \cap V = \phi$.
Thus $(x, y) \in U \times V \subset X \times X - \Delta$.
" \leq ": Given $x, y \in X$ with $x \neq Y$, since
 $X \times X - \Delta$ is open, there exists an
open subset $W \subset X \times X$ such that
 $(x, y) \in W \subset X \times X - \Delta$. Since
the product topology can $X \times X$
is generated by subsets of the
form $U \times V$ where U and V are
apen subsets of X, there exist
 U_X and V_X open in X such that
 $(x, y) \in U_X \times V_X \subset W \subset X \times X - \Delta$.
Thus $U_X \ni x$ and $V_X \ni Y$ such that
 $(x, y) \in U_X \times V_X \subset W \subset X \times X - \Delta$.

3. (20 points) Let X and Y be topological spaces and $f: X \to Y$ be a function. Define the graph of f to be

$$\Gamma = \{ (x, y) \in X \times Y \mid y = f(x) \}$$

Consider the following statement: if Γ is a closed subset of $X\times Y,$ then f is continuous.

(a) If in addition Y is compact, prove the above statement.

Given any
$$x \in X$$
, let V be an open
verighborhood of $f(x)$. Given any
 $y \neq f(x)$, since Γ is closed, there
exist open $V_y \ni y$ and open $U_y \ni x$
such that $U_y \cap f^{-1}(V_y) = \phi$. Since
Y is compact and $Y = \bigcup V_y \cup V$,
we have $Y = V \cup \bigcup V_{y_1}$ for some n. Let $U = \bigcap_{i=1}^{n} U_{y_i}$.
(b) If in addition Y is Hausdorff, prove the converse of the above state. Then $f(U) \subset V$.
Let $(x, y) \in X \times Y - \Gamma$ so that $Y \neq f(x)$.
Since Y is thausdorff, there exist
open subsets U and V of Y such that
 $U \ni f(x)$, $V \ni Y$, and $U \cap V = \phi$.
Since f is continuous, $f^{-1}(U)$ is
apen. Then $(x, y) \in f^{-1}(U) \times V \subset$
 $X \times Y - \Gamma$. Therefore $X \times Y - \Gamma$ is
open and so Γ is closed.

4. (20 points) Give an example of a topological space X and a finite subset $A \subset X$ whose closure \overline{A} is infinite. Is there an example if X is Hausdorff?

Let
$$X = \mathbb{R}$$
 equipped with the trivial topology
and $A = \{0\}$. Then given any $x \in \mathbb{R}$,
its only open neighborhood is \mathbb{R} , which
intersects A. Thus $x \in \overline{A}$. Therefore $\overline{A} = \mathbb{R}$.
No. If X is Hansdorff, any singleton is
closed, and hence so is any finite subset.

- 5. (20 points) Let $\{0, 1\}$ denote the 2-element set with the discrete topology, and let $C = \{0, 1\}^{\mathbb{N}}$ be the product of countably infinitely many copies of the 2-element set, with the product topology.
 - (a) Prove that C is sequentially compact.

Let
$$\{\vec{V}_n\}_{n=1}^{\infty} \subset C$$
 be a sequence.
The first components $V_{n,1}$ of \vec{V}_n must
have infinitely many 0 or 1, say 0.
Among these \vec{V}_{n_k} , their second components
 $V_{n_k,2}$ must have infinitely many 0 or 1,
Song 0. Inductively, we obtain a subsequence
converging to $(0,0,...)$ in the product topology.

(b) Show that this fails with the box topology.

The sequence
$$\{\vec{e}_n\}_{n=1}^{\infty}$$
 with $\vec{e}_n = (0, 0, ..., 0, 1, 0, ...)$
has no converging subsequence in the box topology.