

- True
- (d) Let (X, τ) be a compact topological space. Then every compact subset of *X* is closed.

1 is compact but not closedWe need a space that is not T2. Again, let $X = \{x, y\}$ with the trivial topology. It is compact because it is finite. The set

2. (20 points) Let X be a topological space and let $X \times X$ be the product space. The set

$$
\Delta = \{(x, x) \mid x \in X\} \subset X \times X
$$

is called the diagonal of $X \times X$. Prove that *X* is Hausdorff if and only if the diagonal Δ is a closed subset of $X \times X$.

\n
$$
x \Rightarrow
$$
 " If suffices to show that $X \times X - \Delta$ is open. Let $(x, y) \in X \times X - \Delta$ so that $x \neq y$. Since X is Hausdorff, then exist open subsets U and V such that $U \Rightarrow x$, $V \Rightarrow y$, and $U \cap V = \varphi$. Thus $(x, y) \in U \times V \subset X \times X - \Delta$.\n

\n\n $x \leftarrow 1$, Given $x, y \in X$ with $x \neq y$, since $X \times X - \Delta$ is open, there exists on open subset $W \subset X \times X$ such that $(x, y) \in W \subset X \times X - \Delta$. Since the product topology on $X \times X$ is generated by subsets of the form $U \times V$ where U and V are open subsets of X , there exist U_X and V_X open in X such that $(x, y) \in U_X \times V_X \subset W \subset X \times X - \Delta$. Thus $U_X \Rightarrow x$ and $V_X \Rightarrow y$ such that $U \times \Omega V_X = \varphi$.\n

3. (20 points) Let *X* and *Y* be topological spaces and $f: X \rightarrow Y$ be a function. Define the *graph* of *f* to be

$$
\Gamma = \{(x, y) \in X \times Y \mid y = f(x)\}
$$

Consider the following statement: if Γ is a closed subset of $X \times Y$, then f is continuous.

(a) If in addition *Y* is compact, prove the above statement.

Given any
$$
x \in X
$$
, let V be our open
neighborhood of $f(x)$. Given any
 $y \neq f(x)$, since Γ is closed. Hence
exist open $V_y \rightarrow y$ and open $U_y \rightarrow x$
such that $U_y \cap f^{-1}(V_y) = \phi$. Since
 \forall is compact and $\forall = \bigcup_{y \neq f(x)} V_y \cup V$,
we have $\forall = V \cup \bigcup_{x=1}^{m} V_{y,x}$ for some n. Let $U = \bigcap_{x=1}^{m} U_{y,x}$.
We have $\forall = V \cup \bigcup_{x=1}^{m} V_{y,x}$ for some n. Let $U = \bigcap_{x=1}^{m} U_{y,x}$.
Use $(x, y) \in X \times Y - \Gamma$ so that $y \neq f(x)$.
Since \forall is Hausdorff, there exist
open subsets U and V of \forall such that
 $(U \rightarrow f(x), V \rightarrow y, and U \cap V = \phi$.
Since f is continuous, $f^{-1}(U) \times V \subset$
 $\forall x \forall - \Gamma$. Therefore $X \times Y - \Gamma$ is
open and so Γ is closed.

4. (20 points) Give an example of a topological space *X* and a finite subset $A \subset X$ whose closure \overline{A} is infinite. Is there an example if *X* is Hausdorff?

Let
$$
X = R
$$
 equipped with the trivial topology
and $A = \{0\}$. Then given any $x \in \mathbb{R}$,
its only open neighborhood is \mathbb{R} , which
intersects A. Thus $x \in \overline{A}$. Therefore $\overline{A} = \mathbb{R}$.
No. If X is Hausdorff, any singleton is
closed, and hence so is any S'injection is

- 5. (20 points) Let *{*0*,* 1*}* denote the 2-element set with the discrete topology, and let $C = \{0, 1\}^{\mathbb{N}}$ be the product of countably infinitely many copies of the 2-element set, with the product topology.
	- (a) Prove that *C* is sequentially compact.

Let
$$
\{\vec{v}_n\}_{n=1}^{\infty} \subset C
$$
 be a sequence.
\nThus, $\{\vec{v}_n\}_{n=1}^{\infty} \subset C$ be a sequence.
\nThus, $\{\vec{v}_n\}_{n=1}^{\infty} \subset C$ for all \vec{v}_n must
\nwe, \vec{v}_{n_k} is always a sum of \vec{v}_{n_k} .
\n $\{\vec{v}_{n_k,2}\}_{n=1}^{\infty} \subset \{\vec{v}_n\}$, then second components
\n $\{\vec{v}_{n_k,2}\}_{n=1}^{\infty} \subset C$ for finitely many 0 or 1.
\nSo, $\{\vec{v}_n\}_{n=1}^{\infty} \subset C$ for all \vec{v}_n is an integer, we obtain a subsequence
\n $\{\vec{v}_n\}_{n=1}^{\infty} \subset C$ for all \vec{v}_n is an integer, we have $\{\vec{v}_n\}_{n=1}^{\infty} \subset C$.

(b) Show that this fails with the box topology.

The sequence
$$
\{\vec{e}_n\}_{n=1}^{\infty}
$$
 with $\vec{e}_n = (0, 0, ..., 0, 1, 0, ...)$
has no converging subsequence in the box topology.