Assignment 12

- 1. [Y] Sec. 4.2 #4.
- 2. [Y] Sec. 4.2 #5.
- 3. [Y] Sec. 4.2 #6.
- 4. [M] Sec. 52 #7 (recall that a topological group is a group G endowed with a topology such that the group multiplication and taking inverse are continuous operations, i.e., the maps $G \times G \rightarrow G$, $(g_1, g_2) \mapsto g_1 g_2$ and $G \to G$, $g \mapsto g^{-1}$ are continuous).
- 5. [Y] Sec. 4.3 #3.
- 6. (a) Suppose that f and g are continuous maps $X \to Y$, and $H: X \times [0,1] \to Y$ is a homotopy from f to g. Fix a base point $x \in X$. Show that there exists a path $a: [0,1] \to Y$, starting at f(x) and ending at g(x), such that $f_*(\gamma) = [a] * g_*(\gamma) * [a]^{-1}$ for all $\gamma \in \pi_1(X, x)$.
 - (b) Using part (a), prove the following. Suppose that $f: X \to Y$ and $g: Y \to X$ are continuous maps such that $g \circ f$ is homotopic to id_X and $f \circ g$ is homotopic to id_Y . Then for any base point $x \in X$, the map $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ is an isomorphism.
- 7. (a) Show that there does not exist a retraction from D^2 to S^1 . (Hint: use the functoriality of the fundamental group.)
 - (b) Show that any continuous map $f: D^2 \to D^2$ must have a fixed point, i.e., $x_0 \in D^2$ such that $f(x_0) = x_0$. (Hint: construct a retraction from D^2 to S^1 if there were no fixed point. The same strategy works for all D^n with π_1 replaced by higher homotopy groups π_n or homology groups H_n .)
- 8. [Y] Sec. 4.5 #3.
- 9. [Y] Sec. 4.5 #5.
- 10. [Y] Sec. 4.5 #10.