Assignment 10

1. Recall that a topology \mathscr{T} can be specified by a *subbasis* \mathscr{S} , so that its basis \mathscr{B} consists of all finite intersections of elements of \mathscr{S} , and \mathscr{T} consists of all arbitrary unions of elements of \mathscr{B} .

Let X and Y be topological spaces. Denote by $\mathscr{C}(X, Y)$ the set of continuous maps from X to Y. Given any $C \subset X$ compact and $U \subset Y$ open, write

$$S(C,U) = \{ f \in \mathscr{C}(X,Y) \mid f(C) \subset U \}$$

Define the *compact-open topology* on $\mathscr{C}(X, Y)$ to be generated by the subbasis \mathscr{S} consisting of sets of the form S(C, U).

- (a) Check that \mathscr{S} is indeed a subbasis.
- (b) Given a third space Z, define a map $\phi : \mathscr{C}(X \times Y, Z) \to \mathscr{C}(X, \mathscr{C}(Y, Z))$ by sending $f : X \times Y \to Z$ to $F : X \to \mathscr{C}(Y, Z)$ such that each $x \in X$ maps to

$$F(x) \colon Y \to Z$$
$$y \mapsto f(x, y)$$

Check that ϕ is well-defined, i.e., each F(x) is continuous and F is also continuous. (Hint: write F(x) as a composite of continuous maps. To show the continuity of F, for each fixed $x_0 \in X$, you need only consider neighborhoods of $F(x_0)$ that are in the subbasis \mathscr{S} . Use compactness in the definition of \mathscr{S} .)

- (c) With additional mild assumptions on the spaces involved, one can show that the map ϕ in part (b) is a homeomorphism. Based on this fact, explain why a homotopy between continuous maps from Y to Z is equivalent to a path in $\mathscr{C}(Y, Z)$.
- 2. [Y] Sec. 4.1 #2.
- 3. [Y] Sec. 4.1 #3.
- 4. [Y] Sec. 4.1 #4.