MA323 Topology Midterm Exam

2:00–3:50 pm

November 3, 2020

Your name: SID:

1. (10 points) Show that the countable collection

B = { $(a, b) | a, b \in \mathbf{Q}, a < b$ }

is a basis that generates the standard topology on R.

The standard topology on IR is generated
by open intervals
$$
(x,y)
$$
, $x,y \in \mathbb{R}$, $x < y$.
Thus it suffices to show that each (x,y)
is a union of elements in B. Indeed,
since Q is dense in R, there exist
sequences $\{a_n\}$ and $\{b_n\}$ in Q such
that $a_n \rightarrow x$ from the right and
 $b_n \rightarrow y$ from the left with $a_n < b_n$
for each n. Therefore $(x,y) = \bigcup_{n=1}^{\infty} (a_n, b_n)$

- 2. (40 points) Let *X* be a set. Let \mathcal{T}_c be the collection of all subsets *U* of *X* such that $X - U$ is either countable or all of X .
	- (a) (5 points) Show that \mathcal{T}_c is a topology on X .

(i) Since
$$
\phi
$$
 is countable, $X \in \mathcal{T}_c$.
\nSince $X - \phi = X$, $\phi \in \mathcal{T}_c$.
\n(ii) Given $\{U_{\alpha} | \alpha \in A\} \subset \mathcal{T}_c$, $X - U_{\alpha} U_{\alpha} = \bigcap (X - U_{\alpha})$.
\n $\mathcal{T}_1 X - U_{\alpha}$ is countable for some α , then $\bigcap_{\alpha \in A} (X - U_{\alpha})$
\nis countable. If $X - U_{\alpha} = X$ for all α , then $\bigcap_{\alpha \in A} (X - U_{\alpha})$
\nis countable. If $X - U_{\alpha} = X$ for all α , then $\bigcap_{\alpha \in A} (X - U_{\alpha})$
\n(iii) Given $\{U_{\alpha} | \alpha \in \mathcal{T}_c$.
\n(iiii) Given $\{U_{\alpha} | \alpha \in \mathcal{T}_c$.
\n(iv) $\{U_{\alpha} - U_{\alpha} | \alpha \in \mathcal{T}_c$, $X - \bigcap_{\alpha = 1}^{\infty} U_{\alpha} \subset \mathcal{X}$. Otherwise,
\nas a finite union of countable sets, $\bigcup_{\alpha = 1}^{\infty} (X - U_{\alpha})$ is countable
\nFor the rest of the question, X denotes the topological space (X, \mathcal{T}_c) . Therefore
\n(b) (5 points) Suppose that A is an uncountable subset of X . Show that $\bigcap_{\alpha = 1}^{\infty} U_{\alpha} \in \mathcal{T}_c$.
\n $\bigcap_{\alpha = 1}^{\infty} \{U_{\alpha} \in \mathcal{T}_c\}$
\n

(c) (5 points) Suppose in addition that *A* is proper and let $x \in X - A$. Show that *x* is a limit point of *A*.

We need to show that given
\nany neighborhood
$$
U
$$
 of x ,
\n $(U - \{x\}) \cap A \neq \emptyset$. It suffices
\n $+ 6$ show that $X - (U - \{x\})$ is
\ncomtable. Note that $X - (U - \{x\})$
\n $= (X - U) \cup \{x\}$ and $X - U$ is
\ncountable.
\nAlternatively, by part (b), since $X = A = AUA'$, we
\n(10 points) Given x from part (c) show that every neighborhood of **have** $X - A \subseteq A'$

(d) (10 points) Given x from part (c), show that every neighborhood of **NOWE** *x* contains infinitely many points in *A*. (Hint: first show that *X* satisfies the T_1 axiom.)

Continuing the proof of part (c),
\nlet
$$
a_1 \in (U - \{x\}) \cap A
$$
. Then
\n $U - \{a_1\}$ is a neighborhood of x.
\nInductively we obtain a sequence
\n $\{a_i\}_{i=1}^{\infty}$ of distinct points in A
\nthat are contained in U.
\n(Did not use the hint. Cf. Theorem 17.9
\nof the textbook.)

> Alternatively, suppose that {xn} in A converges to χ . Since $x \notin A$. $X - \{x_n, n \in \mathbb{Z}_+\}$ is a neighborhood $x - 2$ and $y - 3$ is the state of $y - 2$ and $y = 3$ is the contains all but finitely many points (e) (10 points) In spite of part (d), show that any sequence of points in \mathcal{X}_h , α contracted to α (Hitcher Contracted to α (Hitcher Contracted to α) diction *A* does not converge to *x*. (Hint: first show that every convergent sequence in *A stabilizes*, i.e., is eventually constant.) $Sine \times 4A$, we need only show the statement of the hint. Let Jan3 be a convergent sequence in A, with a its limit. Let $K = \xi a_n |\alpha_n \neq a_3$. Then $X - K$ is a neighborhood of a and so it contains all but finitely many points an. Thus K is finite. (f) (5 points) Show that *X* is not metrizable. (Hint: show that in a metric space, any point in the closure of a subset is the limit of a sequence in the subset.) β y part (b), $x \in \overline{A}$. In view of pont (e), it suffices to prove the claim in the hint. Let γ be a metric space. DCY , and yeD . For each $n \in \mathbb{Z}_+$, let $d_n \in D \cap B(y, \frac{1}{n})$ Then the sequence $\{d_n\}$ converges to y.

In fact. given any neighborhood Vol ,
y, thene exists $B(y, r) \subset V$ for some $r > 0$. Chrose $N \in \mathbb{Z}_t$ such that $\frac{1}{N} < r$. Then $d_n \in V$ fun all $n \geq N$.

Recall that the condition for a surjection $f: X \rightarrow Y$ to be a quotient map is that $V \subset Y$ is open if and only if $f^{-1}(V)$ is open in X.

3. (10 points)

(a) (5 points) Is an open map necessarily a quotient map? Give a proof or a counterexample.

No. A continuous and surjective open map is a quotient map. The identity map $(X, T_{\text{trivial}}) \rightarrow (X, T_{\text{direct}})$ is open but not continuous. The inclusion of an open subspace is open and continuous but not surjective.

(b) (5 points) Is a quotient map necessarily open? Give a proof or a counterexample.

No. We want to construct a counterexample where $U \subset X$ is apen but $f^{-1}(f(u))$ is not open. Consider $X = \mathbb{R}$ with the standard topology. Detine au equivalence rélation a ou X by declaring $x \sim y$ if and only if $x = y$ on $x, y \in \mathbb{Z}$. Endow the set X/n of equivalence classes with the quotient topology. Then
 $X \rightarrow X/\lambda$ is a quotient map. Let U be an open set containing an integen. (Also see Munkres §22 #3.)

4. (20 points) Let *X* and *Y* be topological spaces and $f: X \rightarrow Y$ be a function. Define the *graph* of *f* to be

$$
\Gamma = \{(x, y) \in X \times Y \mid y = f(x)\}
$$

Consider the following statement: if Γ is a closed subset of $X \times Y$, then f is continuous.

(a) (10 points) Prove this statement or provide a counterexample.

False. Consider
$$
f: R \rightarrow R
$$

\n $x \mapsto \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$
\n(True if Y is compact. Append
\nlater in Homenvork #8.)

(b) (10 points) Do the same for the converse.

Fabze . Consider the identity map
id:(X, Jdiscrete)
$$
\rightarrow
$$
 (X, Jtrivial).
(True if Y is framework.)

- 5. (20 points)
	- (a) (10 points) Prove that the circle and square

$$
\sum := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \bigvee \{x, y \in \mathbb{R}^2 \mid |x| + |y| = 1\}
$$
 are homeomorphic

are homeomorphic.

Define
$$
f: Y \rightarrow X
$$

(x,y) $\mapsto \frac{1}{\sqrt{x^{2}+y^{2}}}(x, y)$

Check

(b) (10 points) Prove that the open and closed unit balls

$$
\{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 < 1\} \qquad \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 \le 1\}
$$

are not homeomorphic.