MA323 Midterm Exam, Fall 2019

Name:

Instructions: Calculators, course notes and textbooks are NOT allowed on the worksheet. All
numerical answers MUST be exact; e.g., you should write m instead of 3.14..., V2 instead of 1.414...,
and :l; instead of 0.3333... Explain your reasoning using complete sentences and correct grammar,
spelling, and punctuation. Feel free to write in either English or Chinese.

Show ALL of your work!

Question 1 (21 points). True or false? You need not justify your answers.

closec
(a) Let X be a topological space and A be a subspace of X. If X is normal, then any continuous map

of A into B may he extended to a contintious map of all of X into R.

(b) Recall that S denotes the minimal uncountable well-ordered set. The set S = Sq U {02} with
the order topology is Hausdorff.

(c) The space Sq is the one-point compactification of Sq.

(d) Let X =R with the countable complement topology and A ¢ X. Then given any a € A, there is
a sequence in A that converges to a.

() With the above notation, if & sequence in A converges to a, then a € A
(f) The 2-manifold RP? is imbeddable into R* but not R?.

(g) Each connected component of a space is both c};@l and closed.




Question 2 (20 points). Let X be a topological space and { X4 }aca be an indexed family of topological
spaces.

(a) Let {2,) be a sequence of points of X. State the definition of (2.} converging to 2 in X.
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(b) State the definition of the product topology on the set J], . 4 Xa.
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(¢) Suppose that X = []. .4 Xa with the product topology. Show that if z; — z in X, then
%a(Zn) > To(x) for each a, where m, : X — X, is the projection map.
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Question 3 (25 points). Let X be a topological space.
(a) State the definition of X being regular.
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{e) Is the converse of the statement in part (d} true? Give a proof or a counterexample.
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Question 4 (20 points). Let f: X — Y, where Y is Hausdorff. Write Gy = {(=, f(2))|z € X}.
(a) Show that if f is continuous, then G is closed in X x Y.
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(b) Show that if ¥ is compact, then the projection x : X x ¥ —» X is a closed map.
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(d) Without Y being compact, is the statement in part (c) still true? Give a proof or a counterexample.
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Question 5 (14 points). Let 4 C R?,

(a) Show that if A is connected and open, then it is path connected. (Hint: Show that given a € 4,
the set of points that can be joined to a by a path in A is both open and closed in A.)
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(b) Show that if 4 is countable, then R — A is path connected. (Hint: How many lines are there CAWHRL '(’{}{ .
passing through a given point of R??)
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