This test is due on or by Friday, January 19 by 1 pm. Return the exam to my office in Huiyuan $3-419$ by the same time. No collaboration is allowed. The only source you may consult is the textbook. All questions have equal value.

1. Let $\left\{f_{n}\right\}$ be a sequence in $L^{2}(X, \mu)$ such that $\left\|f_{n}\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. Show that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}(x)\right| \log \left(1+\left|f_{n}(x)\right|\right) d \mu(x)=0
$$

2. Let $1 \leq p<\infty$ and let $f \in L^{p}(\mathbb{R}, m)$. Given $a \in \mathbb{R}$, let T_{a} be the translation by a, that is, $T_{a} f(x)=f(x-a)$. Show that $T_{a} f$ converges to f in L_{p} as $a \rightarrow 0$. Is this conclusion still true if $p=\infty$?

The remaining three questions form a sequence.
3. Let s be an integer. On the integers \mathbb{Z}, define

$$
\mu_{s}(n)=\left(1+n^{2}\right)^{s}
$$

Then μ_{s} extends to a measure on \mathbb{Z} (we have just defined its values on one-point sets).
(i) Write H_{s} for the space of complex-valued functions on \mathbb{Z}, written as sequences $\left\{a_{n}\right\}_{n \in \mathbb{Z}}$ of complex numbers, such that

$$
\sum\left(1+n^{2}\right)^{s}\left|a_{n}\right|^{2}
$$

converges. If $f=\left\{a_{n}\right\}$ and $g=\left\{b_{n}\right\}$, define the inner product in H_{s} to be

$$
\langle f, g\rangle=\sum a_{n} \bar{b}_{n}\left(1+n^{2}\right)^{s}
$$

Show that $H_{s}=L^{2}\left(\mathbb{Z}, \mu_{s}\right)$, and in particular H_{s} is complete for the norm associated with this inner product.
(ii) Show that the finite sequences $f=\left\{a_{n}\right\}$ with $a_{n}=0$ for all but a finite number of n form a dense subspace of H_{s}.
4. To each $f \in C^{\infty}(T)$, where $T=\mathbb{R} / \mathbb{Z}$ is the circle, associate (again) the Fourier series

$$
f(x)=\sum a_{n} e^{2 \pi i n x} \quad \text { with } \quad a_{n}=\int_{0}^{1} f(t) e^{-2 \pi i n t} d t
$$

(i) Integrating by parts, show that the coefficients satisfy the inequality

$$
\left|a_{n}\right| \ll \frac{1}{|n|^{k}}
$$

for each positive integer k. The symbol \ll means that the left-hand side is less than some constant times the right-hand side for $|n| \rightarrow \infty$.
(ii) Show that $C^{\infty}(T) \subset L^{2}\left(\mathbb{Z}, \mu_{s}\right)$ for all $s \in \mathbb{Z}$, and that $C^{\infty}(T)$ is a dense subspace.
5. Let $r<s$. Show that the unit ball in H_{s} is relatively compact in H_{r}, in other words, it is totally bounded. (This should be compared to the last question in $\# 5$ of Midterm 1.)

