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Abstract: Non-Hermitian systems exhibit rich topological characteristics that relate to a wealth of exotic 

physical effects. As such, to fine-tune these systems for optimal device operation or material properties, 

exceptional points play a crucial role. Notably, they can form exceptional surfaces that afford embedded 

lower-dimensional non-isolated singularities. In this study, given a generic non-Hermitian system with 

parity–time and pseudo-Hermitian symmetries, we provide the first topological classification for non-

defective intersection lines, i.e., degeneracy lines where exceptional surfaces intersect transversally. 

Specifically, by constructing the quotient space of an order-parameter space subject to equivalence 

relations between eigenstates, we reveal that the space of such gapless structures has its fundamental 

group presented as a non-Abelian free group on three generators. This classification predicts a novel 

kind of non-Hermitian gapless topological phase that features a chain of non-defective intersection lines 

in band structures. Moreover, it predicts the existence of topologically protected edge states in one-
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dimensional lattice models that originate from intersection singularities. For such gapless phases, these 

edge states are unexpected from conventional Zak phase theory.  

 

Introduction. Singularities are ubiquitous and play significant roles in various physical systems in the 

real world, often accompanied by exotic physical phenomena1–13. For example, in topological materials, 

a Weyl point in a Hermitian system acts as a sink or source of the Berry curvature, and two Weyl points 

with opposite chiralities are connected by a Fermi-arc surface state1,2,9,11. The existence and stability of 

singularities can be better understood via topology, and a singularity can be characterized by a 

topological invariant, such as the Chern number. This invariant is usually encoded in the adiabatic 

evolution of eigenstates over closed loops or surfaces that enclose the singularity point5–9,11. Recently, 

the topology of non-Hermitian systems has attracted growing attention14–25. As unique features of non-

Hermiticity, exceptional points are singular points on the complex energy plane where both the 

eigenenergies and the eigenstates coalesce14–19. They differ from the usual degeneracies of Hermitian 

systems, such as Weyl points, Dirac points, and nodal lines, in that they may carry fractional topological 

invariants16,18,19,24,26 and can induce stable bulk Fermi-arcs22,24 and braiding of eigenvalues26. The non-

Hermitian skin effect, manifested by sensitivity of the eigen-spectrum to boundary conditions, is 

associated with the point gaps in bulk topology15–18,21,23,25. Recent discoveries of lines, rings, and 

surfaces of exceptional points have further enriched the classes of topological degeneracies27–31. In 

particular, high-order exceptional degeneracies, which frequently appear as the cusps of exceptional 

lines or surfaces, carry a hybrid type of topological invariants in a high-dimensional parameter space32. 

 In the meantime, significant efforts have been devoted to classifying these exceptional points 

and related energy band structures. Topological classifications are of particular importance, as they 

enable predictions of degeneracies in the parameter space whenever the type of energy gaps and the 

Altland–Zirnbauer symmetry class of a system are known14,19,20,33–35. This provides a theoretical 

framework for predicting non-Hermitian topological phases of matter and for guiding their experimental 

realizations. In particular, exceptional points can assemble into hypersurfaces in a 3D parameter space, 

called exceptional surfaces (ESs), which separate exact and broken phases20. ESs are commonly 
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observed in non-Hermitian systems with parity–time inversion (PT) symmetry or chiral symmetry20,27–

29 and have broad applications in the design of sensing and absorption devices31,36. As a subspace of the 

parameter space, ESs may possess embedded lower-dimensional singularities, which have remarkable 

properties differentiating them from other points on the ESs. These so-called hypersurface singularities 

include intersections37, cusps38–40, and swallowtail catastrophes41. They are symmetry protected and 

stable against symmetry-preserving perturbations31,37–41. However, despite various important physical 

phenomena and potential applications, these hypersurface singularities on ESs have never been 

topologically classified. 

In this work, we provide the first topological classification for a typical hypersurface singularity 

in two-band models where exceptional surfaces intersect transversally. We call it a non-defective 

intersection line (NIL) of the ESs. An NIL commonly appears in generic non-Hermitian systems with 

PT-symmetry and an additional pseudo-Hermitian symmetry41. The band structures of such systems 

feature a gapless configuration of ESs connected at an embedded NIL. We analyze equivalence relations 

of eigenstates, and discover that the quotient space of the order-parameter space is homotopy equivalent 

to a bouquet of three circles 
1 1 1M S S S=   . The topology of this NIL is thus characterized by the 

fundamental group of M, which is a non-Abelian free group on three generators. Essentially, we 

introduce intersection homotopy theory to classify such non-isolated singularities for the first time, 

which is very different from the usual homotopy theory addressing isolated singularities6,26,32–35,40. Our 

classification systematically explains exotic physical effects arising from the nontrivial topology of 

NILs, such as the formation and evolution of a chain of NILs. In addition, our topological description 

predicts the stable edge states in one-dimensional lattice models protected by a topological NIL, even 

though they are counter-intuitive for gapless phases and go beyond conventional explanations by Zak 

phase theory. 

Main. The prototypical Hamiltonian is a two-level system H that is PT-symmetric and preserves an 

additional η-pseudo-Hermitian symmetry41–43: 

[ , ] 0H PT = ,        
1 †H H − =                                                     (1) 
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Here, the operator PT can be regarded as complex conjugation with a suitable choice of basis in 

parameter space, and thus the Hamiltonian can always be gauged to be real. The metric operator η here 

takes the Minkowski metric diag( 1,1) = − 13,41,44,45. More details on pseudo-Hermiticity are provided 

in Section 1 of Supplementary Information. These symmetries imply that the k-space Hamiltonian can 

be written in the form 

2 2 3 3( ) ( ) ( )H f i f = +k k k                                                       (2) 

where f2,3 are real-valued functions of three-dimensional (3D) k-space, and σ2,3 are Pauli matrices.  

There is no term multiplied by σ1 due to the above PT-symmetry. Without loss of generality, we may 

assume that the term multiplied by the identity matrix vanishes as well, because it does not affect the 

gapless structure. Such Hamiltonians correspond to physical systems with nonreciprocal hopping of 

orbitals41,46–48.  

 In analogy with the Hermitian case6, the 2D f2,3-plane serves as the order-parameter space of all 

Hamiltonians that preserve the symmetries specified in Eq. (1). In particular, as f2,3 are real functions 

on k-space, any exceptional surfaces (ESs) in the 3D k-space correspond to exceptional lines (ELs) at

2 3f f=   on the 2D f2,3-plane. The ESs intersect transversally in lines (i.e. the NILs) in the k-space, 

which in turn correspond to the intersecting point (called a non-defective intersection point, or NIP) of 

the ELs at the origin 2 3 0f f= = . Moreover, a path traced in the 3D k-space maps to a path on the 2D 

f2,3-plane, and if the path loops around an NIL in the k-space, the corresponding path in the f2,3-plane 

encircles the NIP. Figure 1a shows the gapless structure of the order-parameter space, with red and 

green lines representing the ELs satisfying 2 3f f= , respectively. Regions I and III (satisfying 

2 3| | | |f f ) support Hamiltonians with real eigenenergies and are referred to as PT-exact phases. On 

the other hand, regions II and IV ( 2 3| | | |f f ) are PT-broken phases, where the eigenvalues come in 

complex-conjugate pairs. The paths α, α', β and β' begin and terminate at the ELs, and they are located 

in different regions (Fig. 1a). We aim to classify the NIP at the origin, which is excluded from the 

plane20,49. First, the plane punctured at the origin deformation retracts to a circle S1 (Fig. 1b). Such a 



5 

 

mathematical process can be interpreted as a quotient map, which identifies all points along each ray 

starting from the origin (excluding the origin). This identification is based on the equivalence relation 

that all points on the ray, namely the Hamiltonians, have the same eigenstates ordered by eigenvalues. 

Consequently, the upper and lower halves of EL1 shrink to antipodal points A and A’, respectively, 

while those of EL2 to B and B'. Moreover, there are two equivalence relations on the S1. At point A, the 

two eigenstates coalesce, which coincides with the coalesced eigenstates at point A'. Therefore, A and 

A' should be identified, and one can glue A' to A via a quotient map. The same procedure applies to B 

and B'. It is important to note that antipodal points located in the regions where eigenenergies are gapped 

cannot be identified, because their eigenstates are reversely ordered by the eigenenergies. Such a refined 

topological discrimination of the strata of the origin, the intersecting lines 
2 3f f=  and the plane is a 

distinguished feature of intersection homotopy methods50,51. The intersection homotopy method, which 

is a mathematical technique used to address hypersurface singularities, differs significantly from the 

conventional homotopy method that focuses on the topology of isolated singularities. In the 

conventional homotopic loops, the intention is to avoid intersecting singularities6,49, which inherently 

makes it incapable of dealing with singularities that are entirely located on ESs (or ELs in 2D), just like 

our case. When dealing with non-isolated singularities, the parameter space becomes stratified (as 

described in Section 2 of the Supplementary Information), and the singular hypersurfaces ESs (or ELs 

in 2D) that satisfy 2 3f f=  form a subspace within the parameter space, known as a stratum. Unlike 

conventional homotopic loops, the intersection homotopic loops do not need to avoid intersecting this 

stratum [although intersecting NIL (or NIP in 2D) should be avoided because it is our classification 

target]. In this context, we can define equivalence relations on ESs (or ELs in 2D). Using the above 

procedures, we obtain the quotient space of the S1 in Fig. 1b, which is a bouquet of three circles (see 

Fig. 1c)  

1 1 1M S S S=                                                                 (3) 

The notion of quotient space has been widely applied in physics, and the basic technique is gluing 

identified points within the parameter space under well-defined equivalence relations. A prominent 
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example is the first Brillouin zone, which serves as a quotient space. We know that the band dispersions 

are repetitive with respect to Brillouin zones. Parameters with interspaces being multiples of reciprocal 

lattice vectors can thus be identified. Moreover, the first Brillouin zone can be further reduced to a 

quotient space, such as a circle S1 (in 1D) or a torus S1×S1 (in 2D), by gluing together points on the 

Brillouin zone boundary that share the same eigenvalues and eigenstates. Furthermore, the concept of 

quotient space has been utilized to classify isolated singularities6. More detailed mathematical 

discussions on quotient spaces can be found in Section 2 of the Supplementary Information. The 

fundamental group of M can be calculated as 

1( ) * *M =Z Z Z                                                              (4) 

which is a free non-Abelian group on three generators. As shown in Fig. 1c, the three generators Z1, Z2 

and Z3 of the group can be given by the concatenations of paths αβ, αα' –1 and α'β', respectively. These 

topological invariants associate with the frame deformations of eigenstates along these paths, which are 

explained in detail in Section 3 of Supplementary Information. 

 To better understand how this group encodes physical information, we now introduce loops (or 

concatenated paths) in the order-parameter space that carry nontrivial or trivial topological invariants. 

The concatenated paths characterizing the generators Z1, Z2 and Z3 are shown in Figs. 2a–c, respectively, 

where the dashed lines with arrow denote quotient maps that glue identified points. We note that the 

gluing process does not mean the loop passes through the NIP. Each of the concatenated paths 

corresponds to an S1 in Fig. 1c, which are loops in the quotient space M generating its fundamental 

group. In Fig. 2d, a loop in the plane encircling the NIP is also a concatenation of paths αβα'β', which 

carries the topological invariant Z1Z3, an element in the group [Eq. (4)]. Some other nontrivial loops are 

discussed in Section 4 of Supplementary Information. Typical loops carrying the trivial topological 

invariant are shown in Figs. 2e–g. The loop l does not cut through any EL and is thus confined in a 

single region, which is always trivial because it cannot enclose any singularity (i.e. the excluded point, 

NIP). As we transport l upwards past one of the ELs, the loop decomposes into two paths l1 and l2 (Fig. 

2f). As the endpoints of l1 (or l2) can be identified, l1 (or l2) becomes a loop in the quotient space M. It 
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is a trivial loop that can shrink to a point without encountering the NIP. Therefore, the concatenation 

l1l2 is also trivial. By further expanding l downwards to cut through the other EL (see Fig. 2g), the loop 

becomes a product l1l3l4l5. Since both l1 and l4 correspond to trivial loops in the quotient space M, this 

product is equivalent to the concatenation l3l5. In addition, paths l3 and l5 are along opposite directions 

and are homotopic to α–1 and α, respectively. It is thus not difficult to find out that the product l1l3l4l5 

remains trivial. From the above analysis, we conclude that continuous deformations of a loop (or a 

path), even encountering ELs (or ESs for 3D), will not change the topology. In contrast, encountering 

NIPs (or NILs for 3D) will change the topology. Similar conclusions have also been drawn in Ref. 41. 

Importantly, as can be indicated from the above analysis, a path joining ELs (or ESs) can provide a lot 

of information on the NIP (see Section 4 of Supplementary Information for adiabatic evolution of 

eigenstates) even though it appears open in the parameter space, which is substantially different from 

the situation with isolated singularities. Therefore, if a loop is partitioned into several segments by ELs 

(or ESs), it is necessary to investigate the evolution of eigenstates along each path before discussing 

their combined consequence.  

Next, based on our topological descriptions, we aim to understand the formation of chain-like 

structures composed of NILs and their evolution as the Hamiltonian deforms. The chain of singular 

lines in parameter space is a nontrivial phenomenon which has previously been observed for nodal lines 

in PT-symmetric Hermitian systems6. Here, we show that such an interesting joining phenomenon of 

singular lines can also occur with NILs, for example, 

2 2 2

2 3( ) , ( )x z x y zf k k f k k k d= = − + + −k k                                             (5) 

The Hamiltonian exhibits a chain-like structure in k-space as depicted in Fig. 3a1: a circular NIL located 

on the plane kx = 0 is chained to a pair of hyperbolic NILs located on the plane kz = 0 at two intersecting 

points. All the NILs (satisfying the equations 
2 3 0f f= = ) are contained in ESs, which are represented 

by the red (ES1) and green (ES2) surfaces (satisfying 
2 3f f= , respectively) corresponding to EL1 and 

EL2 in Fig. 1, respectively. We begin by examining the loop l6, which encloses the waists of the two 

ESs and their NILs, and which does not cut through any of the ESs. According to our previous analysis, 
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such a loop, similar to l (Fig. 2e), is topologically trivial. This may not be immediately apparent from 

the figure, as the ESs and NILs seem to prevent the loop from retracting to a point. However, by 

changing d from positive to negative, the waists of the ESs first gradually retract to a point (as shown 

in Fig. 3b1) and then open up to form a gap (as shown in Fig. 3c1). The two hyperbolic NILs enclosed 

by the loop in Fig. 3a1 thus annihilate each other, consistent with the topological triviality of l6. 

Moreover, the trivial loop l6 enforces the ESs containing the two NILs to remain smooth as the 

Hamiltonian deforms. This can be explained by 6l  (see Fig. 3a1), which is homotopic to l6, as they 

enclose the same NILs, but 6l  traverses the ESs. On its plane of cross section, as sketched in Fig. 3a2, 

6l  is segmented by the ESs into several paths, where the red and green lines denote the traces of ES1 

and ES2 on that plane. The topological invariants of the segments along 6l  must cancel each other to 

form a trivial product, which implies that each path lt, connecting points of a single ES without cutting 

through the other ES, must carry a trivial topological invariant. This agrees with our previous analysis 

of l1, l2 and l4 in Fig. 2. As one continues to deform the Hamiltonian (d < 0), the two ESs enclosed 

become disjoint once the two NILs annihilate (see Figs. 3c1–c2). Moving on to the loop l7 in Fig. 3a1, 

we see that it is segmented by the ESs into various paths, as depicted in Fig. 3a3. This loop can be 

represented as a concatenation of paths (β–1α–1β' –1α' –1)2, carrying a nontrivial squared topological 

invariant (Z1
–1Z3

–1)2. This invariant prevents the two encircled circular NILs from annihilating each 

other as d varies in the Hamiltonian [Eq. (5)]. The two NILs merge to a point when d = 0 (Fig. 3b1), 

dividing the nearby area into eight regions (see Fig. 3b3). Since the loop is still the product (β–1α–1β' –

1α' –1)2, its topological invariant does not change and remains to be squared (Z1
–1Z3

–1)2. As d varies 

further, the point splits, and the two NILs become separate in opposite directions, as shown in Figs. 3c1, 

c3. Thus, the squared invariant (Z1
–1Z3

–1)2 is conserved throughout the deformation of this Hamiltonian. 

The conservation of the squared invariant (Z1
–1Z3

–1)2 on l7 and the trivial invariant on l6 (or 6l ) is a 

necessary condition for the chain of NILs. To observe the chain-like structure of NILs, we can design 

3D periodic systems with nonreciprocal hopping between orbitals. The nonreciprocal hopping between 

orbitals has already been realized in phononic systems and electric circuits with the employment of 
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active devices41,52. A design of a 3D face-centered cubic (fcc) lattice model, as well as the hopping 

parameters between orbitals, are shown in Section 5 of Supplementary Information. We note that the 

chain-like structure of NILs is protected by the mirror symmetries kx ↦ –kx and kz ↦ –kz, and breaking 

the symmetries will eliminates such a structure. These physical consequences can all be observed based 

on the design in Section 5 of Supplementary Information. The invariant conservation shows that two 

inannihilable NILs cannot be directly connected by smooth ESs, as one observes in Figs. 3a3–c3. 

Finally, we demonstrate that an NIL (or NIP) can host topologically protected edge states, 

which represents a whole new type of bulk–edge correspondence that appears in a gapless non-

Hermitian system. This concept may seem counterintuitive, as bulk–edge correspondence is typically 

discussed in gapped phases8,11. Specifically, let us consider the following 1D k-space Hamiltonian 

corresponding to a lattice model,  

3 2 0( ) cos sin cos( )H k k i k v k a  = + + +                                         (6) 

where σ0 is the 2×2 identity matrix. The Hamiltonian includes a term proportional to σ0, which is useful 

in tuning gaps in projection bands to identify edge states. As can be commonly understood, introducing 

the identity term does not change the topology of the system and, in particular, the degeneracy features 

remain. Comparing Eq. (6) to Eq. (1), with k-space represented by a 1D momentum k, we obtain the 

following correspondence: f3(k) = cos k and f2(k) = sin k. The path traced out by (f2(k), f3(k)) goes around 

the NIP as shown in Fig. 4a, and we can see that the 1D Brillouin zone of the lattice model carries the 

topological invariant Z1Z3 (cf. Fig. 2d). Such a Hamiltonian can be experimentally realized by the 1D 

tight-binding lattice as shown in Fig. 4b. To observe the topological edge states, we need to consider 

the band structure and topology of the systems with open boundary condition (OBC) and periodic 

boundary condition (PBC), respectively. The schematic sample with finite number of unit cells under 

PBC is shown in the upper panel of Fig. 4b, in which the terminal unit cells are connected via the 

hoppings. The sample under OBC is shown in the lower panel of Fig. 4b, where the terminal unit cells 

are disconnected. The corresponding real-space Hamiltonian is 
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1 2

† †

3 2 0 1 3 2 0 1

ˆ ˆ

1 1
( ) ( )

2 2

ia ia

r j j j jj j

t t

H ve c c ve c c     −

+ −= + + + − +                    (7) 

where j denotes unit cell index. The hopping of orbitals is described by two 2×2 hopping matrices 1̂t

and 2̂t , whose entries represent the hopping parameters between lattice sites, as shown in Fig. 4c. The 

hopping matrices satisfy the relation 
*

1 2
ˆ ˆt t= . As can be seen from Eq. (7), the intercell hoppings 

between adjacent unit cells are non-Hermitian and nonreciprocal, meaning that the two directional 

hopping matrices  
†

1 2
ˆ ˆt t . Rather, they have entries that are negatively conjugate to each other 

12 21 *

1 2( )t t= − Error! Bookmark not defined. and 
21 12 *

1 1( )t t= − . Such tight-binding models can 

potentially be realized by electric circuits and phononic lattices incorporating active devices41,52. As the 

1D Brillouin zone inevitably cuts through the ELs four times, the band structure undergoes line-gap 

closing four times, as shown in Fig. 4d. Clearly, the conventional Zak phase, which is commonly used 

for explaining edge states in gapped 1D systems, cannot be defined in this 1D Brillouin zone. 

Nevertheless, the two eigenstates experience frame deformation process along each path, evolving from 

parallel states to antiparallel states (Fig. S3b2 in Supplementary Information). This process shows that 

the relative rotation angle between the two eigenstates is π, which equals an integral 

k
l

i dk


  =                                                            (8) 

The loop lα of the integration [Eq. (8)] is shown in Fig. 4e and connects the trajectories of the two 

eigenvalues along the path α at the ELs. In this context, the loop lα is in the 3D Re(E)-f2-f3 space. 

Moreover, Eq. (8) represents the conventional Berry phase, which is related to the frame deformation 

along α. Along the path α', the two eigenstates swap in comparison to α, resulting in a relative rotation 

angle of –π. This means that the Berry phase along the loop lα' given by Eq. (8) is –π (see Fig. 4d). 

Additionally, the identity term in the Hamiltonian [Eq. (6)] creates a real line gap between the 

eigenenergies on α and α' in the projection band. As a result, if we truncate the 1D system with open 

boundaries, there will be a pair of edge modes residing in this line gap, as shown in Fig. 4f, where the 

black and red dots represent the projection bands under OBC and PBC. In broken phases, the 
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eigenenergies form point gaps in the projection band, which lead to the non-Hermitian skin effect as 

indicated by black dots in the continuum in Fig. 4f. It is shown that the eigenvalues of the skin modes 

form arcs located inside the loop of the eigenmodes under PBC on the complex plane. The edge states 

are separate from any bulk modes and skin modes in the continuum, making them easily distinguishable. 

The field distribution (amplitude |φ|) of one edge mode is shown in Fig. 4g, where clearly the field is 

confined at the left edge of the 1D chain (inset). 

 

To summarize, we have topologically classified a generic non-Hermitian two-level system possessing 

PT-symmetry and an additional pseudo-Hermitian symmetry which may arise in lattice systems with 

nonreciprocal hopping41,46–48. These systems feature surfaces of exceptional points that host stable 

embedded intersection singularities in momentum space. Our study demonstrates that the topology of 

this gapless structure can be understood by examining the quotient space under equivalence relations 

of eigenstates, which turns out to be a bouquet of three circles. The fundamental group of this space is 

isomorphic to a free non-Abelian group on three generators. This classification enables us to predict the 

formation and evolution of chain-like structures of NILs as the Hamiltonian deforms, based on the 

conservation of topological invariants. Our work further leads to prediction for the existence of 

topologically protected edge states in 1D lattice models, which is a remarkable and counterintuitive 

phenomenon for such gapless phases, going beyond the conventional Zak phase understanding. The 

methods of quotient space topology and intersection homotopy theory might potentially be extended to 

systematically classify other hypersurface singularities in non-Hermitian systems, such as high-order 

exceptional points as cusps32,40 and more complicated swallowtail catastrophes41. Our work also 

proposed a new kind of non-Hermitian gapless topological phase of matter, providing pathways for 

designing systems to realize robust topological non-defective degeneracies in non-Hermitian systems.  
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Fig. 1| Construction of a quotient space under equivalence relations. a The gapless structure of the 

order-parameter space (i.e. f2,3 plane), where EL1 and EL2 are exceptional lines satisfying 
2 3f f= , 

respectively. The NIP is at the origin where the ELs intersect, with f2 = f3 = 0.. Regions I and III are PT-

exact phases, and Regions II and IV are PT-broken phases. b The 2D plane excluding the NIP can 

deformation retract to a circle S1, with the upper and lower parts of EL1 shrinking to A and A', 

respectively, and with those of EL2 to B and B'. c Gluing identified points A with A', and B with B', we 

obtain the quotient space of S1 in panel b as a bouquet of three circles. 
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Fig. 2| Typical loops carrying nontrivial or trivial topological invariants. a–c Loops carrying 

nontrivial topological invariants Z1, Z2 and Z3, respectively, which are the generators of the group [Eq. 

(4)]. The dashed lines with arrow denote quotient maps, i.e., gluing of identified points. d The loop 

formed by the concatenation αβα'β' encloses the NIP, which carries the topological invariant Z1Z3. Point 

A' in panels a–d denotes the basepoint. e–g Evolution of a loop carrying trivial topological charge. e A 

loop without touching ELs is confined within a specific region and is trivial. f Moving the loop l in 

panel e upwards along the black arrow direction, we see that it becomes a product of paths l1 and l2. 

Both l1 and l2 are trivial loops in the quotient space M, and thus the loop as their product is also trivial. 

g Stretching the loop along the black arrow direction in panel f, we obtain that the loop crosses EL1 and 

becomes a product l1l3l4l5 of paths. The path l4, similar to l1 and l2, corresponds to a trivial loop in the 

quotient space M. The paths l5 and l3 are oriented in opposite directions (labeled by the arrows) and are 

homotopic to α and α−1, respectively (cf. Fig. 1a). The path product l1l3l4l5 is thus trivial. 
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Fig. 3| Explaining the formation of the chain of NILs in k-space and its evolution against 

perturbations with the fundamental group. a1–c1 ESs (red and green surfaces) and NILs (black lines) 

plotted from Eq. (5), with d > 0, d = 0 and d < 0, respectively. The blue loops l6 and 6l  have trivial 

topological invariants. a2–c2 Cross sections on the plane containing 6l . The enclosed pair of NILs can 

annihilate each other. Each path lt is a path with its endpoints on the same ES without cutting through 

the other ES. Similar to l1, l2 and l4 in Fig. 2, lt carries a trivial topological invariant (the subscript t 

stands for “trivial”). a3–c3 Cross sections on the plane containing the orange loop l7. The NILs enclosed 

cannot annihilate each other. Red and green lines: ESs; Dark blue dots: NILs; Black dots: intersecting 

points of loops with ESs (in both Row 2 and Row 3). 
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Fig. 4| Topologically protected edge states by the invariant Z1Z3. a A loop circulating the NIP, as 

the Brillouin zone of the 1D lattice model in Eq. (6), is partitioned into four paths, with α and α' residing 

in exact phases. b. Sample designs of the lattice model under PBC (upper panel, terminal unit cells are 

connected with hoppings) and OBC (lower panel, terminal unit cells are disconnected). Here the black 

circles denote unit cells and the green bonds denote the hopping matrices connecting adjacent unit cells. 

The dashed blocks encircle two unit cells, and the structure inside the block is shown in panel c. c 

Realization of the lattice model. The dashed block shows the internal structure of unit cells and the 

hoppings (labelled in panel b with dashed blocks). The hopping parameters 
11

1,2t , 
12

1,2t , 
21

1,2t  and 
22

1,2t  are 

the entries of the hopping matrices 1̂t  or 2̂t  in Eq. (7). d Eigenvalue dispersions (real part) of the model 

of Eq. (7) in the 1D Brillouin zone. Since the Brillouin zone cuts through ELs four times, the band 

structure experience gap closing four times. e Joining the trajectories of two bands on the path α forms 

a loop in Re(E)-f2-f3 space lα, along which the Berry phase is π. This quantized Berry phase is equal to 

the relative rotation angle between the two eigenstates resulting from frame deformation along α. For 

the path α', joining the two bands forms the loop lα', along which the Berry phase is –π. This is because 

from α to α' the two eigenstates swap due to band inversion at NIP. The relative rotation angle between 

the eigenstates changes sign. f Plots of projection bands of the 1D lattice model under open boundary 

condition (OBC, black dots) and periodic boundary condition (PBC, red dots). There exists a pair of 

edge modes in the line gap for eigenstates along the loops lα and lα' in panel e. g Field distribution of 



21 

 

one edge mode. The lattice model with OBC has 300 periods (600 lattice sites, denoted by Ns). Inset: 

zoom-in view showing the field distribution near the left edge. 
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 4 

1. Pseudo-Hermiticity and metric operator 5 

The pseudo-Hermiticity can be regarded as a symmetry in non-Hermitian physics1, and a formal 6 

definition of pseudo-Hermiticity is always accompanied with a metric operator η 7 

1 †H Hη η− =                                                                 (S1) 8 

Hence, a pseudo-Hermitian system is also called a η-pseudo-Hermitian system, and the metric operator 9 

η is a Hermitian matrix. Recently, the parity-time inversion symmetry (PT) is included in pseudo-10 

Hermiticity symmetry2,3. The considered system thus includes two inequivalent pseudo-Hermitian 11 

symmetries. In quantum mechanics, the Hamiltonians of two systems can be considered to be equivalent 12 

if they can transform to each other via unitary transformations ( 1 †U U− = ) 13 

†H E UHU U EU H Eϕ ϕ ϕ ϕ ϕ ϕ′ ′ ′= → = → =                                   (S2) 14 

We apply the transformation to Eq. S1 15 

1 † † †

† † 1 † † †

1 †

U H U UH U
U U UHU U U UH U

H H

η η
η η

η η

−

−

−

=
→ =

′ ′ ′ ′→ =
                                           (S3) 16 

where †U Uη η′ =  is the transformed metric operator. For the considered system in Eq. (S2), one can 17 

apply an SU(2) transformation to the Hamiltonian, e.g. 18 

1 12 2

2 2 3 3 2 3 3 2( ( ) ( ) ) cos ( ( ) ( ) )sin

i i
H e He

f i f f i f

θ θσ σ

σ σ θ σ σ θ

−
′ =

= + + − +k k k k
                       (S4) 19 



It is found that the Hamiltonian can be transformed to a PT-symmetric system with equal gain and loss 20 

for / 2θ π= , 21 

2 3 3 2( ) ( )H f i fσ σ′ = − +k k                                                   (S5) 22 

and the metric operator is simultaneously transformed to 23 

0
0
i

i
η  ′ =  − 

                                                               (S6) 24 

Hence, the classification in this work can be extended to other PT-symmetric pseudo-Hermitian systems 25 

(e.g. realized by equal gain and loss, Eq. S5) with equivalent metric operators4. 26 

 27 

2. Quotient space and stratified space 28 

In topology, the quotient space of a topological space under given equivalence relations is a new 29 

topological space constructed by endowing the quotient set of the original topological space with the 30 

quotient topology5. Let (X, τX) be a topological space, and let ~ be equivalent relation on X. The quotient 31 

set Y=X/~ is the set of equivalence classes of elements of X. The equivalence class of x∈X is denoted 32 

by [x]. The quotient map associated with ~ refers to the surjective map 33 

: / ~
[ ]

q X X
x x

→
→

                                                          (S7) 34 

Intuitively speaking, all points in each equivalence class are identified or glued together. A well-known 35 

example of quotient space is the Brillouin zone. In the momentum space of periodic systems, a point k 36 

is identified with points k+maGa because a k-space Hamiltonian at these points have the same 37 

eigenvalues and eigenstates. Here Ga are reciprocal lattice vectors and ma are integers. That is why we 38 

mostly considers the band dispersions in the first Brillouin zone. It is also notable that the points on one 39 

side of the Brillouin zone boundaries can be translated to the points on the other boundary under 40 

translational operations of Ga. Such points are identified and can be glued together. As simple examples, 41 

the first Brillouin zone is a quotient map of the momentum space under equivalence relation of 42 



translations by Ga, and points in the first Brillouin zone are the representatives of all the equivalence 43 

classes. For 1D periodic systems, identifying points on the first Brillouin zone boundary constructs a 44 

quotient space, which is a 1D circle S1 (see Fig. S1a1-a2). Similarly, opposite edges (p1 and p2, and p3 45 

and p4) of the Brillouin zone of 2D periodic systems can be identified (see Fig. S1b1). By gluing p1 to 46 

p2, the Brillouin zone becomes a cylinder (see Fig. S1b2). We further glue p3 to p4, and the cylinder 47 

becomes a torus T (see Fig. S1b3). p1 (or p2) and p3 (or p4) are called the skeleton of the torus, and is a 48 

bouquet of two circles with a common basepoint 1 1S S∨ . The surface of the torus is called the two-49 

cell. Assembling the skeleton and the two-cell, the torus can be described by the product 1 1T S S= × . 50 

The topology of the torus is thus described by its fundamental group 1( )Tπ = ×Z Z . This is a free 51 

Abelian group on two generators.  52 

 The momentum space of the considered system is a stratified space6,7. In topology, a stratified 53 

space is a triple (V,S,ζ), where V is a topological space (often we require it to be locally compact, 54 

Hausdorff, and second countable), S is a decomposition of V into strata 
X S

V X
∈

=  , and ζ is the set of 55 

control data {(TX),(πX),(ρX)|X∈S}, where TX is an open neighborhood of the stratum X, πX: TX→X is a 56 

continuous retraction, and ρX: TX→[0,+∞) is a continuous function. These data need to satisfy the 57 

following conditions: 58 

1.  Each stratum X is a locally closed subset and the decomposition S is locally finite. 59 

2.  The decomposition S satisfies the axiom of the frontier: if X, Y∈S and Y X∩ ≠ ∅ , then Y X⊂ . 60 

The condition implies that there is a partial order among strata: Y<X if and only if Y X⊂  and Y≠X. 61 

3. Each TX is a smooth manifold. 62 

4. X={v∈TX| ρX(v)=0}. So ρX can be viewed as the distance function from the stratum X. 63 

5. For each pair of strata Y<X, the restriction (πX, ρX): (0, )YT X Y→ × +∞  is a submersion. 64 

6. For each pair of strata Y<X, there holds Y X Yπ π π=  and Y X Yρ π ρ= . 65 



Consider the parameter space f2-f3 of our Hamiltonian, the topological space V is simply the plane (Fig. 66 

S2). Thus S is the decomposition of V into three strata (X, Y, Z), which are the 2D space 2R  (X), the 67 

singular hypersurfaces ELs at 2 3f f= ±  (Y=Sing(X)), and the hypersurface singularity NIP 68 

(Z=Sing(Sing(X))) at the center, as shown in Fig. S2. For each stratum (e.g. X), the smooth manifold TX 69 

considers the nearby neighborhood. Therefore, T1-T3 in Fig. S2 correspond to the three strata X, Y and 70 

Z, respectively. 71 

 Our classification is based on eigenstates. The Hamiltonian in spaces without gap closing can 72 

be expressed with the sum 73 

1,2

L R
i i i

i
H E ϕ ϕ

=

=                                                           (S8) 74 

where ( )L R
iϕ  denote the left and right eigenstates of the Hamiltonian. The pseudo-Hermiticity and PT 75 

symmetries of the system enforces the left and right eigenstates (both in exact and broken phases) to be 76 

connected by the following relation 77 

*( )L R
i iϕ η ϕ=                                                                 (S9) 78 

The quotient space is constructed by identifying points with the same eigenstates. Note that the 79 

eigenstates are ordered by the corresponding eigenvalues, and the criterion for ordering eigenstates has 80 

been introduced in the main text. Hence, gluing point A' and point A, and B to B' is understandable, 81 

because the two eigenstates at these points coalesce, and ordering eigenstates is meaningless at these 82 

points. 83 

1 2 2 3

1 2 2 3

1
1

1
1

for f f

for f f

ϕ ϕ

ϕ ϕ

− 
= = = 

 
 

= = = − 
 

                                            (S10) 84 

However, in spaces without gap closing, by adding a minus sign to the Hamiltonian in Eq. S8, both 85 

eigenenergies take negative signs, and the eigenstates remain the same. This process can be realized by 86 



taking the negatives of f2 and f3, which are just the antipodal points lying in opposite regions with respect 87 

to the NIP. Even though the two points have the same eigenstates, the order of the two states exchanges 88 

for antipodal points because eigenvalues are added by minus signs. Therefore, the two points cannot be 89 

identified, which is distinct from the points on ELs. The constructed space Eq. (3) in the main text is a 90 

stratified quotient space, and the corresponding topology Eq. (4) is thus a quotient space topology. Since 91 

the nontrivial loops in parameter (or quotient) space all traverses the singular hypersurfaces (i.e. EL or 92 

ES), our approach is affiliated to the intersection homotopy theory6. 93 

 94 

3. Frame deformation of eigenstates 95 

The metric operator for pseudo-Hermiticity plays a similar role as the space-time metric in general 96 

relativity8,9, and the eigenstates are like local coordinate frames (or tetrad). The local metric g can be 97 

defined with the indefinite inner product |mn m ng ϕ ηϕ= 10. In our previous work discussing the 98 

topology of swallowtail catastrophes in non-Hermitian systems10, we established the relationship 99 

between the local metric g and the geometric phase. Here we repeat the derivation details. The evolution 100 

problem is governed by the equation 101 

                                                    m mH i ζϕ ϕ= ∂                                                         (S11) 102 

where ζ  denotes a path parameter, and mϕ  are the eigenstates. The completeness of eigenstates (off 103 

ES) shows that any field can be expanded as 104 

1( ( )) [ ( ( ))] ( ( ))m
n n m

m
Uφ λ ζ λ ζ ϕ λ ζ−=                                        (S12) 105 

where λ  denotes the parameter space of the Hamiltonian with components 1 2 3, , ...λ λ λ . It is not 106 

difficult to find that nφ  is also the solution of Eq. S11. In static evolution problems, ( ( ))nφ λ ζ  107 

represents ( ( ))nϕ λ ζ δζ+ . Applying the partial derivative with respect to ζ , one obtains 108 



1

1
1

( ( )) [ ( ( ))] ( ( ))

[ ( ( ))] ( ( ))( ( )) [ ( ( ))]

m
n n m

m
mn m

m n

i H U

Ui i U

φ λ ζ λ ζ ϕ λ ζ
ζ

λ ζ ϕ λ ζϕ λ ζ λ ζ
ζ ζ

−

−
−

∂ =
∂

∂ ∂= +
∂ ∂

                 (S13) 109 

The instantaneous eigenvalue problem 110 

( ( )) ( ( )) ( ( ))m m mH Eλ ζ ϕ λ ζ ϕ λ ζ=                                          (S14) 111 

and applying a scalar product by the left eigenstate lϕ′  from the left of Eq. S13 yields 112 

1
1 1( ( ))[ ( ( ))][ ( ( ))] [ ( ( ))]

l
ml mn

l n l n
UiE U U

ϕ λ ζλ ζλ ζ ϕ λ ζ
ζ ζ

−
− −∂∂ ′− = +

∂ ∂
              (S15) 113 

The partial derivative with respect to ζ can be expanded as  114 

( ( )) ( ( ))
, ( 1,2,3...)

k
m m

k
k

k
ϕ λ ζ ϕ λ ζ λ

ζ λ ζ
∂ ∂ ∂= =

∂ ∂ ∂                          (S16) 115 

We define the affine connection 116 

( ( ))mn
k m n n mk kA

ϕ λ ζ
ϕ ϕ ϕ

λ λ
∂ ∂′ ′= − = −

∂ ∂
                               (S17) 117 

and the solution to U–1 is thus obtained as 118 

( )1

0 0 (0) 0
Pexp[ ( ( ))] Pexp( ) exp[ ( ( ))]

k
k

k kU ds A i dsE s d A i dsE s
s

ζ ζ λ ζ ζ

λ

λ λ λ λ− ∂= − = × −
∂         (S18) 119 

Ignoring the dynamical phase, the geometric phase is simply 120 

( )1

(0)
Pexp( )k

kU d A
λ ζ

λ
λ− =                                                   (S19) 121 

where P denotes path ordering operator, which is important here, because the affine connection A is a 122 

matrix. Considering the non-commutative nature of matrix product, A is a non-Abelian parallel transport 123 



gauge, and the integration of A on closed loops depends on the path circulating singularities. Here we 124 

define a local metric g with its elements being 125 

|mn m ng ϕ ηϕ=                                                           (S20) 126 

which has explicit relations with the affine connection. The symmetries (Eq. 1 in the main text) of the 127 

Hamiltonian provide an important relation between the left and right eigenstates 128 

T
m mϕ ϕ η′ =  (or equivalently, T

m mϕ ηϕ′ = , *
m mϕ ϕ η′ = , *

m mϕ η ϕ′ =                (S21) 129 

This relation provides an orthogonality to the right eigenstates 130 

0
0

T
m n

m n
m n

ϕ ηϕ
= ≠
≠ =

                                                    (S22) 131 

The orthogonal relation shows that the arbitrary phase can always be removed by normalizing the 132 

eigenstates (up to an unfixed sign) 133 

m
m T

m m

ϕϕ
ϕ ηϕ

→                                                         (S23) 134 

The normalization of eigenstates can make g a constant matrix and thus the partial derivative with 135 

respect to the path parameter vanishes 136 

0 |mn m ngζ ζ ϕ ηϕ= ∂ = ∂                                                 (S24) 137 

Inserting the identity operator l l l l
l l

I ϕ ϕ ϕ ϕ′ ′= =  , one obtains 138 

| |
k k km n m l l n m l l n

l l
λ λ λϕ ηϕ ϕ ϕ ϕ ηϕ ϕ η ϕ ϕ ϕ′ ′∂ = ∂ + ∂               (S25) 139 

We note that 140 

* ** *| | | | |
k k k km l m l l m l mλ λ λ λϕ ϕ ϕ ηϕ ϕ η ϕ ϕ ϕ′ ′∂ = ∂ = ∂ = ∂                   (S26) 141 



And thus relationship between the metric g and the affine connection of the geometric phase 142 

* 0
i i

l l
k m ln ml k nA g g A+ =                                                     (S27) 143 

This relation is important for us to predict the emergence of ELs and NIPs. More details on multiband 144 

models can be found in Ref. 10. 145 

 The local metric g is important for us to understand the evolution of eigenstates. In a specific 146 

region, g is invariant. For example in PT-exact phases, the local metrics in Region I and Region III are 147 

in the following forms 148 

I

1 0
0 1

g  
=  − 

,  III

1 0
0 1

g
− 

=  
 

                                               (S28) 149 

Here the sequence of eigenvalues is defined by sorting the corresponding eigenvalues from small to 150 

large. The geometric phase is an integration of the affine connection  151 

( )1

(0)
Pexp( )U d A

ξ− = 
k

kk
k                                                     (S29) 152 

where P is the path ordering operator because the affine connection is a matrix. It is not difficult to find 153 

out that the two eigenstates experience Lorentz boost and the geometric phase is simply 154 

1 expU Tγ− =                                                             (S30) 155 

where T is the Lie algebraic generator of SO(1,1) group 156 

0 1
1 0

T  
=  
 

                                                               (S31) 157 

and can be derived from Eq. (S27). Next, we define the path parameter θ (see Fig. S3a), with 3 cosf θ=  158 

and 2 sinf θ= . The evolution of eigenvalues and eigenstates along the path α ( / 4 / 4π θ π− ≤ ≤ ) is 159 

shown in Fig. S3b1 and b2, respectively. Note that the eigenstates have been rescaled. As can be 160 

indicated in Fig. S3b2, the two eigenstates are rotating in opposite directions, and resultantly, they 161 

evolve from parallel states to antiparallel states, which is typical for frame deformations. This process 162 



occurs because γ varies from +∞ to 0 and to −∞, and the infinity of γ is provided by the ELs, i.e. the 163 

path departs from EL1 and terminates at EL2. It is thus understandable that the frame deformation is a 164 

result of hyperbolic transformation, i.e. the Lorentz boost in general relativity8. In Region III, the 165 

evolution of eigenstates is similar to that in Region I, simply the two eigenstates swap. 166 

 In broken phases, the local metrics are both 167 

II,IV

0 1
1 0

g  
=  
 

,                                                          (S32) 168 

and the evolution of eigenstates is still defined on SO(1,1) group. The difference is that the two 169 

eigenstates become complex conjugate, and the frame deformation process is extended to the complex 170 

space. Results for path β ( / 4 3 / 4π θ π≤ ≤ ) is provided in Fig. S3c. As shown in Fig. S3c2-c3, the 171 

initially parallel eigenstates bifurcate to form a conjugate pair, and finally evolve to two anti-parallel 172 

imaginary vectors. 173 

 With the above frame deformation process on any of the paths aforementioned, one can already 174 

determine that an NIP can be formed by the intersection of the two ELs (or ESs). Hence, an open path 175 

joining ELs (or ESs) can provide a lot of information on the intersection NIP (or NIL) of the ELs (or 176 

ESs). This is essentially different from isolated singularities, for which a path is only meaningful 177 

whenever it is closed. Therefore, if we consider a closed loop circulating a hypersurface singularity that 178 

is partitioned into several paths by the ELs (or ESs), it is necessary to investigate each open path that 179 

terminates at the ELs (or ESs) and then discuss their combinations. Our former work10 has established 180 

the relation between the frame deformation with the conventional Berry phase, which is also mentioned 181 

in the main text to explain the topologically protected edge states. 182 

 183 

4. Some other nontrivial loops in parameter space 184 

In Fig. 2 of the main text, we introduced some typical nontrivial and trivial loops and the corresponding 185 

topological invariants. Since the number of elements in the group (Eq. 4) is infinitely large, and some 186 



elements other than Fig. 2 might also be useful. Here we give a brief introduction on these invariants 187 

and the corresponding path combinations in parameter space.  188 

 Figure S4a shows the path concatenation α'β. Note that the basepoint has been fixed at A (or A') 189 

just like the main text, and thus we cannot exchange the order in the product (i.e. βα'). Exchanging the 190 

order in the product means that the basepoint is changed from A (or A') to B (or B'). In homotopy theory, 191 

one will obtain another fundamental group by changing the basepoint without changing the order 192 

parameter space, and the groups obtained by changing the basepoint are isomorphic to each other since 193 

the quotient space M is path-connected. It is not difficult to find out that α'β=α'α−1αβ, and thus the 194 

corresponding topological invariant is Z2
−1Z1, which is an element of the fundamental group (Eq. 4). 195 

The path concatenation β'−1β is totally in broken phases, and is thus a counterpart of Fig. 2b. Since β'−1β 196 

can be obtained as the path product β'−1α'−1α'α−1αβ, it is thus obtained that the invariant on the loop is 197 

Z3
−1Z2Z1. In a similar way, the path combination in Fig. S4c αβ' can be obtained as the product αα'−1α'β', 198 

and the invariant on the loop is simply Z2
−1Z3.  199 

 200 

5. Non-reciprocal tight binding model realizing chain of NILs experimentally 201 

Apart from the continuous model in the main text, the chain-like structure of NILs can also be realized 202 

with a periodic system with non-reciprocal hoppings, and such a system enables experimentally 203 

observing the chain-like structure of NILs. Here we consider a 3D fcc lattice model in Fig. S5a, and the 204 

corresponding Brillouin zone is shown in Fig. S5b, where M and N denote two inequivalent lattice sites 205 

with opposite onsite energies ±E0, respectively. The hopping between M and N (on dark green bonds) 206 

is non-reciprocal (M→N: t1, M→N: –t1), and the hoppings on yellow and red bonds [between the 207 

adjacent sites in the same sublattice but in different directions, i.e. yellow bonds: M Mr r a b→ + +
  

 and 208 

N Nr r a b→ + −
  

; red bonds: M Mr r a b→ + −
  

 and N Nr r a b→ + +
  

] are characterized by t2 and –t2, 209 

respectively. The corresponding real space Hamiltonian is given by 210 
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where  a , b


 and c  are the set of orthogonal lattice vectors connecting lattice sites M and N (see Fig. 212 

S5a). Here sgn(h)=1 and –1 for h=M and N, respectively. The corresponding k-space Hamiltonian can 213 

be obtained by Fourier transformation 214 

†
1 , ,

† †
0 , , , ,

† †
2 , , , ,

( ) . .

( )

( )( )

y yx x z z

x y x y x y x y

ik ikik ik ik ik
k M k N k

M k M k N k N k

ik ik ik ik ik ik ik ik
M k M k N k N k

H t e e e e e e a a h c

E a a a a

t e e e e a a a a

−− −

+ − − − − +

= + + + + + −

+ −

+ + − − −

                      (S34) 215 

and the k-dependent Hamiltonian can be expressed as 216 

0
1

0

2sin sin cos cos cos
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cos cos cos 2sin sin
x y x y z

x y z x y

E k k k k k
H

k k k E k k
+ + + 
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k                             (S35) 217 

It is can be observed that 3 0( ) 2sin sinx yf E k k= +k  and 2 ( ) cos cos cosx y zf k k k= + +k , and thus 218 

the Hamiltonian preserves the symmetries in Eq. (1). If E0=0, the onsite energies on M and N are the 219 

same, and the system has mirror symmetries in the x and y directions. Resultantly, the band structure is 220 

symmetric about kx=π/dL and ky=0 planes. The ESs and NILs for E0=0 are plotted in Fig. S5c, where the 221 

red and green surfaces are ESs satisfying 2 3f f=  , respectively. As can be seen, a chain of NILs is 222 

formed on the intersection line of the mirror planes (kx=π/dL and ky=0, see Fig. S5c). The orange dashed 223 

loop (Fig. S5d) is a combination (α'β'αβ)2 that carries a squared topological invariant (Z3Z1)2, which 224 

means that the enclosed NILs cannot annihilate each other. The blue dashed loop does not traverse any 225 

ES and is trivial. The two loops set necessary condition for the presence of the chain of NILs. Apart 226 

from the topological invariants, the mirror symmetries is also an important factor to the emergence of 227 

chain of NILs, because the chain points are on the intersection line (red arrows) of the two mirror planes 228 

(kx=π/dL and ky=0). A nonzero E0 can break the mirror symmetries in kx and ky directions, which 229 

eliminates the intersection points (as shown in Fig. S5e). However, the breaking of mirror symmetries 230 



does not affect the topology on the loops. As shown in Fig. S5e, the blue loop is still trivial, because it 231 

does not touch any ESs. The topological invariant on the orange loop is conserved [still (Z3Z1)2], as the 232 

traversed ESs remain the same (Fig. S5d and S5f). Therefore, the emergence of the chain of NILs not 233 

only requires the symmetries in Eq. (1), but also needs two mirror symmetric planes. Such a structure 234 

is not stable against perturbations to the Hamiltonian, deforming the Hamiltonian without changing the 235 

symmetries can easily eliminate the chain of NILs as shown in Fig. 3 of the main text. 236 

 237 
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 256 

Fig. S1. Quotient space of momentum space in periodic systems. a1-a2 The quotient space of 1D 257 

Brillouin zone is a circle (S1) by identifying the two points on the Brillouin zone boundary. b1-b3 258 

Construction of quotient space of 2D Brillouin zone. Identifying the boundaries p3 with p4 gives a 259 

cylinder, which becomes a torus by identifying p1 with p2. 260 

 261 



 262 

Fig. S2. Stratified space of the 2D plane with ELs and NIP. 263 



 264 

Fig. S3. Frame deformation along different paths. a Paths α and β in parameter space. θ denotes the 265 

path parameter, i.e. f3=cosθ, f2=sinθ, / 4 / 4π θ π− ≤ ≤  for α, / 4 3 / 4π θ π≤ ≤  for β. b1-b2 266 

Evolution of eigenvalues (real part, see panel b1) and eigenstates along path α (see panel a). c1-c3 267 

Evolution of eigenvalues (imaginary part, see panel c1) and eigenstates (c2, real part; c3, imaginary 268 

part) along path β (see panel a). 269 



 270 

Fig. S4. Some other nontrivial loops and the corresponding topological invariants (other than Fig. 2) 271 

taking from the group Eq. 4 in the main text.  272 

 273 



 274 

Fig. S5. Proposal of an fcc lattice model to realize the chain-like structure of NILs for experimental 275 

observation. a fcc lattice with two sites M (blue balls) and N (pink balls). The interspace distance 276 

between M and N is dL, and a , b


 and c  are bond vectors. The hopping on dark green bonds is non-277 

reciprocal (M→N: t1, N→M: –t1). The hopping on the same lattice sites in different directions (in a b+
  278 

and a b−
 ) have opposite signs (hopping on yellow bonds: t2, hopping on red bonds: –t2). b First 279 

Brillouin zone of the fcc lattice. c, e ESs (red and green surfaces) and NILs (black lines) for E0=0 and 280 

E0≠0 in Eq. (6). Panel c has a chain of NILs, which is symmetric with respect to <100> plane. The 281 

intersecting points on the chain are labelled with red arrows. d, f Cross section of the plane kz=0 (where 282 

the orange loop locates) for panel c and panel d, respectively. The topological charge on the loop is 283 

conserved even though the mirror symmetries are broken. 284 

 285 


